Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/61"
(→List) |
(→List) |
||
Line 326: | Line 326: | ||
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031068.png ; $f \in L ^ { p } ( \mathcal{T} ^ { N } )$ ; confidence 0.447 | 163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031068.png ; $f \in L ^ { p } ( \mathcal{T} ^ { N } )$ ; confidence 0.447 | ||
− | 164. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110145.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s \beta } e ^ { - \alpha ^ { s } } d N ( s ) }$ ; confidence 0.447 | + | 164. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110145.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s \beta } e ^ { - \alpha ^ { s } } d N ( s ) },$ ; confidence 0.447 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140107.png ; $ | + | 165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140107.png ; $\operatorname{ind} T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda )$ ; confidence 0.447 |
166. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008069.png ; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447 | 166. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008069.png ; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447 | ||
Line 336: | Line 336: | ||
168. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002044.png ; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447 | 168. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002044.png ; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447 | ||
− | 169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059026.png ; $m = 0 , \pm 1 , \pm 2 , | + | 169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059026.png ; $m = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.447 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d | + | 170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d } \alpha _ { l }$ ; confidence 0.447 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n | + | 171. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n + 2} )$ ; confidence 0.447 |
172. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015028.png ; $12$ ; confidence 0.447 | 172. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015028.png ; $12$ ; confidence 0.447 | ||
Line 346: | Line 346: | ||
173. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020043.png ; $( W , J ^ { \prime } )$ ; confidence 0.447 | 173. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020043.png ; $( W , J ^ { \prime } )$ ; confidence 0.447 | ||
− | 174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008041.png ; $\psi ( P ) = \operatorname { exp } ( \sum t _ { n } \Omega _ { n } ) \phi ( \sum t _ { n } \vec { V } _ { n } , P )$ ; confidence 0.447 | + | 174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008041.png ; $\psi ( P ) = \operatorname { exp } ( \sum t _ { n } \Omega _ { n } ) \phi ( \sum t _ { n } \vec { V } _ { n } , P ),$ ; confidence 0.447 |
175. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017018.png ; $\hat { A } = A \oplus B$ ; confidence 0.447 | 175. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017018.png ; $\hat { A } = A \oplus B$ ; confidence 0.447 | ||
Line 352: | Line 352: | ||
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c0258304.png ; $\| T \| \leq 1$ ; confidence 0.447 | 176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c0258304.png ; $\| T \| \leq 1$ ; confidence 0.447 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006063.png ; $ | + | 177. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006063.png ; $R_0 ( X , D ) \otimes \mathbf{Q}$ ; confidence 0.447 |
178. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029021.png ; $\alpha \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447 | 178. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029021.png ; $\alpha \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447 | ||
− | 179. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060137.png ; $k [ 1 - S ( k ) + \frac { Q } { i k } ] \in L ^ { 2 } ( R )$ ; confidence 0.447 | + | 179. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060137.png ; $k [ 1 - S ( k ) + \frac { Q } { i k } ] \in L ^ { 2 } ( \mathbf{R} ),$ ; confidence 0.447 |
180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011020.png ; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447 | 180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011020.png ; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447 | ||
− | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015041.png ; $g \in G , X , Y \in \mathfrak { g }$ ; confidence 0.446 | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015041.png ; $g \in G , X , Y \in \mathfrak { g }.$ ; confidence 0.446 |
182. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006010.png ; $0 \leq \alpha _ { 1 } < \ldots < \alpha _ { k } \leq n - 1$ ; confidence 0.446 | 182. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006010.png ; $0 \leq \alpha _ { 1 } < \ldots < \alpha _ { k } \leq n - 1$ ; confidence 0.446 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008090.png ; $Z \rightarrow \lambda _ { + } ^ { N | + | 183. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008090.png ; $Z \rightarrow \lambda _ { + } ^ { N } $ ; confidence 0.446 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339012.png ; $f ( x _ { 0 } , h )$ ; confidence 0.446 | + | 184. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339012.png ; $\delta f ( x _ { 0 } , h )$ ; confidence 0.446 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301408.png ; $d _ { i }$ ; confidence 0.446 | + | 185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301408.png ; $d _ { i j}$ ; confidence 0.446 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041021.png ; $\langle L p , q \rangle _ { s } = \langle p , L q \rangle _ { s }$ ; confidence 0.446 | + | 186. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041021.png ; $\langle \mathcal{L} p , q \rangle _ { s } = \langle p , \mathcal{L} q \rangle _ { s }$ ; confidence 0.446 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015048.png ; $d | + | 187. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015048.png ; $d \alpha$ ; confidence 0.446 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005045.png ; $\Theta = \left( \begin{array} { c c c } { A } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446 | + | 188. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005045.png ; $\Theta = \left( \begin{array} { c c c } { \mathcal{A} } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446 |
189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013038.png ; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446 | 189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013038.png ; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446 |
Revision as of 21:01, 10 May 2020
List
1. ; $f ( \mathcal{A} ) = ( 2 \pi ) ^ { - k } \int _ { \mathbf{R} ^ { k } } e^ { i \xi \mathcal{A} } \hat { f } ( \xi ) d \xi$ ; confidence 0.458
2. ; $\lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right),$ ; confidence 0.458
3. ; $K _ { 2 } F$ ; confidence 0.458
4. ; $0.0110100\dots$ ; confidence 0.458
5. ; $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$ ; confidence 0.458
6. ; $a \in E$ ; confidence 0.458
7. ; $x \in \operatorname { sp } u$ ; confidence 0.458
8. ; $F ( \tau ) = \frac { \pi } { 2 } \int _ { 0 } ^ { \infty } P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) f ( x ) d x,$ ; confidence 0.458
9. ; $t = ( t _ { n } )$ ; confidence 0.458
10. ; $\mathbf{E}$ ; confidence 0.458
11. ; $h ^ { i } ( K _ { X } \otimes L ) = 0 , \quad i > 0.$ ; confidence 0.458
12. ; $( \frac { \partial } { \partial \lambda } ) [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ] = z ^ { \lambda_2 } + \ldots ,$ ; confidence 0.458
13. ; $y _ { 1 } , \dots , y _ { m } + 1$ ; confidence 0.458
14. ; $J _ { n / 2} ( r ) = 0$ ; confidence 0.458
15. ; $\mathbf{P} ( i \in \Gamma _ { p } ) = p _ { i }$ ; confidence 0.458
16. ; $h \in M$ ; confidence 0.458
17. ; $( F _ { win } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s,$ ; confidence 0.457
18. ; $f = \sum _ { j } a _ { j} x_j$ ; confidence 0.457
19. ; $\operatorname { deg } \Delta$ ; confidence 0.457
20. ; $U \in SGL _ { n } ( \mathbf{Z} A )$ ; confidence 0.457
21. ; $( n _ { 1 } , \dots , n _ { k } )$ ; confidence 0.457
22. ; $\text{rank} ( A ) = k \geq p$ ; confidence 0.457
23. ; $L ^ { p }$ ; confidence 0.457
24. ; $\sigma i$ ; confidence 0.457
25. ; $\operatorname { char } ( X ) = \prod _ { i = 1 } ^ { s } f _ { i } ( T ) ^ { l _ { i } } \prod _ { j = 1 } ^ { t } \pi ^ { m _ { j } },$ ; confidence 0.457
26. ; $\mathbf{Q} ^ { \times }$ ; confidence 0.456
27. ; $\theta = ( \theta _ { 1 } , \dots , \theta _ { m } ) \in \Theta \subset \mathbf{R} ^ { m }$ ; confidence 0.456
28. ; $E _ { n + 1} ( \operatorname { cos } \theta ) =$ ; confidence 0.456
29. ; $\operatorname{lim} _ { \rightarrow } H ^ { p } ( U _ { \lambda } ; G ) = H ^ { p } ( x ; G )$ ; confidence 0.456
30. ; $- \frac { 1 } { 2 } \sum _ { i , j = 1 } ^ { n } \frac { \partial ^ { 2 } \mu _ { 0 } } { \partial k _ { i } \partial \dot { k } _ { j } } ( k _ { c } , R _ { c } ) \frac { \partial ^ { 2 } A } { \partial \xi _ { i } \partial \xi _ { j } } + l A | A | ^ { 2 }$ ; confidence 0.456
31. ; $L_1$ ; confidence 0.456
32. ; $h_\lambda = h _ { \lambda _ { 1 } } \ldots h _ { \lambda _ { l } }$ ; confidence 0.456
33. ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } ),$ ; confidence 0.456
34. ; $( - z ) P _ { N } ( - z ) / Q _ { N } ( - z )$ ; confidence 0.456
35. ; $( f _ { n } ) _ { n = 1 } ^ { \infty } $ ; confidence 0.456
36. ; $D ^ { r }$ ; confidence 0.456
37. ; $\{ z \in \mathbf{C} ^ { n } : 1 + \{ z , \zeta \} \neq 0 \}$ ; confidence 0.456
38. ; $U ^ { i }$ ; confidence 0.456
39. ; $f ( z ) = \frac { | \alpha | } { \alpha } \frac { z - \alpha } { 1 - \overline { \alpha } z } , \quad | \alpha | < 1,$ ; confidence 0.456
40. ; $\textbf{E} [ W _ { p } ] _ { NP } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) },$ ; confidence 0.456
41. ; $\mathcal{U} ( L )$ ; confidence 0.455
42. ; $S ( k ) = f ( - k ) / f ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.455
43. ; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } \rangle } )$ ; confidence 0.455
44. ; $\operatorname { gcd } ( N _ { 2 x } , D _ { 2 x } ) = 1$ ; confidence 0.455
45. ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455
46. ; $n \gg 1$ ; confidence 0.455
47. ; $\Gamma ^ { \prime } \vdash_{\mathcal{D}} \varphi$ ; confidence 0.455
48. ; $t \rightarrow \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) 1 d s = \mathcal{S} ^ { - 1 } \left( \int _ { 0 } ^ { t } ( D _ { s } ^ { * } + D _ { s } ) \Omega d s \right),$ ; confidence 0.455
49. ; $| w _ { 1 } | \geq \ldots \geq | w _ { n } |$ ; confidence 0.455
50. ; $\zeta ^ { \gamma } = \zeta ^ { u }$ ; confidence 0.455
51. ; $\nabla : \otimes ^ { r } \mathcal{E} \rightarrow \otimes ^ { r+ 1 } \mathcal{E}$ ; confidence 0.455
52. ; $q_X$ ; confidence 0.455
53. ; $\lambda x _ { 1 } \ldots x _ { n } . M$ ; confidence 0.455
54. ; $R _ { p }$ ; confidence 0.455
55. ; $\overline{M}$ ; confidence 0.455
56. ; $T _ { E }$ ; confidence 0.455
57. ; $k \operatorname { log } a _ { m } \leq i \operatorname { log } a _ { n } \leq ( k + 1 ) \operatorname { log } a _ { m }$ ; confidence 0.455
58. ; $G _ { e } = SL _ { 2 } ( \mathbf{Z} )$ ; confidence 0.455
59. ; $Q _ { s } ( R )$ ; confidence 0.455
60. ; $v _ { i } = \alpha _ { i } ^ { k }$ ; confidence 0.455
61. ; $r = \operatorname { dim } n^-$ ; confidence 0.455
62. ; $h \in QS (\mathbf{ T} , \mathbf{C} ) : = \cup _ { M \geq 1 } M$ ; confidence 0.455
63. ; $\| v \|$ ; confidence 0.455
64. ; $A _ { U } ( s | _ { U } ) = A _ { M } ( s ) | _ { U }$ ; confidence 0.455
65. ; $\operatorname { lim } _ { t \rightarrow \infty } \operatorname { Eh } ( Z ( t ) ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } \mathbf{P} ( T _ { 1 } > u ) d u } =$ ; confidence 0.454
66. ; $b _ { i }$ ; confidence 0.454
67. ; $K ^ { 2 \times }I$ ; confidence 0.454
68. ; $\phi _ { n } ( z ) = \frac { \Phi _ { n } ( z ) } { \| \Phi _ { n } \| _ { \mu } },$ ; confidence 0.454
69. ; $\mathbf{Z}_l$ ; confidence 0.454
70. ; $( \mathcal{A} - z l ) x = K J \varphi _ { - }$ ; confidence 0.454
71. ; $x \in V _ { \bar{0} }$ ; confidence 0.454
72. ; $\int p \overline { q } d \mu = \langle M ( n ) \hat { p } , \hat { q } \rangle$ ; confidence 0.454
73. ; $\rho ( x ) = N \int _ { \mathbf{R} ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }.$ ; confidence 0.454
74. ; $\int _ { B _ { i } } d \Omega _ { n } = V _ { i n } \sim ( \vec { V _ { n } } ) _ { i }$ ; confidence 0.454
75. ; $\operatorname{Ker} \varphi$ ; confidence 0.454
76. ; $L _ { s } ( E ^ { * } , E )$ ; confidence 0.454
77. ; $\varphi , \psi \in L ^ { 2 } ( \mathbf{R} ^ { n} )$ ; confidence 0.454
78. ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) - \operatorname { ord } _ { s = m + 1 } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.454
79. ; $s _ { n } = 0$ ; confidence 0.453
80. ; $P ( x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.453
81. ; $S ( \theta ) \in V _ { q } ^ { p }$ ; confidence 0.453
82. ; $\dots +\left. \frac { n ! } { ( n + 1 ) \ldots 2 n } a _ { n } \right] = S$ ; confidence 0.453
83. ; $P ^ { \sharp } : T ^ { * } M \rightarrow T M$ ; confidence 0.453
84. ; $\text{ contr } ( W ( g ) \otimes \ldots \otimes W ( g ) ) =$ ; confidence 0.453
85. ; $\mathcal{E} _ { * }$ ; confidence 0.453
86. ; $CF ( \zeta - z , w ) = \frac { ( n - 1 ) ! \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } },$ ; confidence 0.453
87. ; $\mathcal{G}$ ; confidence 0.453
88. ; $\mathbf{S} ^ { 2 } \mathcal{E} \otimes \mathbf{S} ^ { 2 } \mathcal{E} \rightarrow \mathbf{A} ^ { 2 } \mathcal{E} \otimes \mathbf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.452
89. ; $| q ( x ) | \leq \operatorname { const } / x ^ { \beta }$ ; confidence 0.452
90. ; $K _ { S } ( \overline { \sigma } ) \cap K _ { \operatorname{totS} }$ ; confidence 0.452
91. ; $D ( f . \omega ) = f . D ( \omega )$ ; confidence 0.452
92. ; $[ \phi ( x _ { 1 } , \ldots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 ) ) ].$ ; confidence 0.452
93. ; $\operatorname { Ind } _ { { H } } ^ { G }$ ; confidence 0.452
94. ; $= { k }$ ; confidence 0.452
95. ; $\text{Alg Mod}^ { *S } \text{ IPC }$ ; confidence 0.452
96. ; $V _ { j } ^ { n } \leq \operatorname { max } \left( \operatorname { max } _ { 0 \leq j \leq J } V _ { j } ^ { 0 } , \operatorname { max } _ { 0 \leq m \leq n } V _ { 0 } ^ { m } , \operatorname { max } _ { 0 \leq m \leq n } V _ { j } ^ { m } \right),$ ; confidence 0.452
97. ; $q_n$ ; confidence 0.452
98. ; $k \geq l $ ; confidence 0.452
99. ; $f _ { \mathfrak{U} } ( k )$ ; confidence 0.451
100. ; $g : \mathbf{P} ^ { 1 } \rightarrow X$ ; confidence 0.451
101. ; $\{ n : a _ { n } = 0 \} \in D$ ; confidence 0.451
102. ; $n \not \equiv \pm 1$ ; confidence 0.451
103. ; $p ( \alpha , t ) = \left\{ \begin{array} { l l } { p _ { 0 } ( \alpha - t ) \frac { \Pi ( \alpha ) } { \Pi ( \alpha - t ) } } & { \text { if } \alpha \geq t, } \\ { b ( t - \alpha ) \Pi ( \alpha ) } & { \text { if } \alpha < t, } \end{array} \right.$ ; confidence 0.451
104. ; $( \tilde { M } , \tilde{g} )$ ; confidence 0.451
105. ; $u$ ; confidence 0.451
106. ; $X _ { 1 } , X _ { 2 } , \dots$ ; confidence 0.451
107. ; $V ( K _ { p } )$ ; confidence 0.451
108. ; $\dot { i } < n$ ; confidence 0.451
109. ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } = I.$ ; confidence 0.451
110. ; $\mathcal{A} \phi$ ; confidence 0.451
111. ; $D ( \phi ) = 1 _ { Y } - \nabla f$ ; confidence 0.451
112. ; $V ^ { n }$ ; confidence 0.451
113. ; $| \lambda - \alpha _ { i , i} | . | x _ { i } | \leq \sum _ { \substack{j = 1 \\ j \neq i }} ^ { n } | \alpha _ { i , j} | \cdot | x _ { j } | \leq r _ { i } ( A ) \cdot | x _ { i } |,$ ; confidence 0.451
114. ; $a ^ { w } = \operatorname{Op} ( b )$ ; confidence 0.451
115. ; $( x _ { 1 } , \dots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
116. ; $P _ { F } ^ { \# } ( n )$ ; confidence 0.450
117. ; $SL ( 2 , \mathbf{Q} )$ ; confidence 0.450
118. ; $H \in \mathbf{N}$ ; confidence 0.450
119. ; $\overline { \sigma } \in G ( K ) ^ { e }$ ; confidence 0.450
120. ; $\zeta \in \mathbf{Z} _ { p }$ ; confidence 0.450
121. ; $\mathcal{R} ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ ; confidence 0.450
122. ; $y = \tilde { y }$ ; confidence 0.450
123. ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { r ( \lambda ) })$ ; confidence 0.450
124. ; $( x _ { i } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
125. ; $\operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 ).$ ; confidence 0.450
126. ; $x _ { i } + x _ { k }$ ; confidence 0.450
127. ; $X / Y$ ; confidence 0.450
128. ; $\mathcal{G} = \operatorname { Fun } _ { q } ( G ( k , n ) )$ ; confidence 0.450
129. ; $E ^ { TF } ( N ) > \sum _ { j = 1 } ^ { K } E _ { atom } ^ { TF } ( N _ { j } , Z _ { j } ),$ ; confidence 0.450
130. ; $X := \Gamma X$ ; confidence 0.450
131. ; $s + T$ ; confidence 0.450
132. ; $\alpha \otimes \hat { f } : = \int _ { - \infty } ^ { \infty } \alpha ( x , \alpha , p - q ) \hat { f } ( q ) d q$ ; confidence 0.450
133. ; $f _ { 1 } , \ldots , f _ { m }$ ; confidence 0.449
134. ; $\{ e ^ { i \eta , y } \phi _ { m } ( y ; \eta ) \}$ ; confidence 0.449
135. ; $T$ ; confidence 0.449
136. ; $\left( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma \right) u = 0.$ ; confidence 0.449
137. ; $\mu _ { i }$ ; confidence 0.449
138. ; $\{ l_j \}$ ; confidence 0.449
139. ; $J _ { i j } > 0$ ; confidence 0.449
140. ; $x \mapsto e ^ { i t } e ^ { i p q / 2 } e ^ { i q x } f ( x + p )$ ; confidence 0.449
141. ; $\operatorname{ad} _ { q } \in L$ ; confidence 0.449
142. ; $\varphi : \Gamma ^ { q + 1 } \rightarrow \mathbf{C}$ ; confidence 0.449
143. ; $A \cap B = * \emptyset$ ; confidence 0.449
144. ; $( A ^ { * } X ) _ { t } = \int _ { 0 } ^ { t } A H _ { s } . d B _ { s }$ ; confidence 0.449
145. ; $\alpha_{i,j} ( x ) = \alpha _ { j , i } ( x )$ ; confidence 0.448
146. ; $\left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right).$ ; confidence 0.448
147. ; $\delta ( z ) = \operatorname { diag } ( z ^ { k _ { 1 } } , \ldots , z ^ { k _ { n } } )$ ; confidence 0.448
148. ; $= Z ^ { 2 } \rho _ { \text { atom } } ^ { TF } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ).$ ; confidence 0.448
149. ; $q = p , p ^ { 2 } , p ^ { 3 } , . .$ ; confidence 0.448
150. ; $x _ { 1 } < \ldots < x _ { n }$ ; confidence 0.448
151. ; $e _ { n } ( F _ { d } )$ ; confidence 0.448
152. ; $P \in N$ ; confidence 0.448
153. ; $| \lambda - \alpha _ { i , i} | = r _ { i } ( A ) \text { for each } 1 \leq i \leq n.$ ; confidence 0.448
154. ; $\mu _ { x }$ ; confidence 0.448
155. ; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ ; confidence 0.448
156. ; $P \in A$ ; confidence 0.448
157. ; $t _ { 1 } , \ldots , t _ { n }$ ; confidence 0.448
158. ; $z \in C \backslash \mathbf{Z} _ { 0 }^- , \quad \mathbf{Z} _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \},$ ; confidence 0.448
159. ; $m ( P ) \geq c_0$ ; confidence 0.448
160. ; $= \sum _ { n \in \mathbf{Z} } \sum _ { k \geq 0 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ( - 1 ) ^ { k } x _ { 1 } ^ { n - k } x _ { 2 } ^ { k } x _ { 0 } ^ { - n - 1 },$ ; confidence 0.448
161. ; $| U |$ ; confidence 0.448
162. ; $X \subset S ^ { n}$ ; confidence 0.447
163. ; $f \in L ^ { p } ( \mathcal{T} ^ { N } )$ ; confidence 0.447
164. ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s \beta } e ^ { - \alpha ^ { s } } d N ( s ) },$ ; confidence 0.447
165. ; $\operatorname{ind} T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda )$ ; confidence 0.447
166. ; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447
167. ; $z ^ { \alpha } = z _ { 1 } ^ { \alpha _ { 1 } } \ldots z _ { n } ^ { \alpha _ { n } }$ ; confidence 0.447
168. ; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447
169. ; $m = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.447
170. ; $| \alpha | = \sum _ { l = 1 } ^ { d } \alpha _ { l }$ ; confidence 0.447
171. ; $p = ( p _ { 1 } , \dots , p _ { n + 2} )$ ; confidence 0.447
172. ; $12$ ; confidence 0.447
173. ; $( W , J ^ { \prime } )$ ; confidence 0.447
174. ; $\psi ( P ) = \operatorname { exp } ( \sum t _ { n } \Omega _ { n } ) \phi ( \sum t _ { n } \vec { V } _ { n } , P ),$ ; confidence 0.447
175. ; $\hat { A } = A \oplus B$ ; confidence 0.447
176. ; $\| T \| \leq 1$ ; confidence 0.447
177. ; $R_0 ( X , D ) \otimes \mathbf{Q}$ ; confidence 0.447
178. ; $\alpha \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447
179. ; $k [ 1 - S ( k ) + \frac { Q } { i k } ] \in L ^ { 2 } ( \mathbf{R} ),$ ; confidence 0.447
180. ; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447
181. ; $g \in G , X , Y \in \mathfrak { g }.$ ; confidence 0.446
182. ; $0 \leq \alpha _ { 1 } < \ldots < \alpha _ { k } \leq n - 1$ ; confidence 0.446
183. ; $Z \rightarrow \lambda _ { + } ^ { N } $ ; confidence 0.446
184. ; $\delta f ( x _ { 0 } , h )$ ; confidence 0.446
185. ; $d _ { i j}$ ; confidence 0.446
186. ; $\langle \mathcal{L} p , q \rangle _ { s } = \langle p , \mathcal{L} q \rangle _ { s }$ ; confidence 0.446
187. ; $d \alpha$ ; confidence 0.446
188. ; $\Theta = \left( \begin{array} { c c c } { \mathcal{A} } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446
189. ; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446
190. ; $\| u - u v \| _ { A _ { p } ( G ) } < \epsilon$ ; confidence 0.446
191. ; $T _ { 1 }$ ; confidence 0.446
192. ; $X _ { n } = f ( Z _ { n } , \dots , Z _ { n } + m )$ ; confidence 0.446
193. ; $d > 2$ ; confidence 0.446
194. ; $\cup \lambda X \lambda$ ; confidence 0.446
195. ; $\hat { f }$ ; confidence 0.446
196. ; $\phi ( n ) = \sum _ { d | n } d \mu ( \frac { n } { d } )$ ; confidence 0.446
197. ; $a _ { 0 } + a _ { 1 } t + \ldots + a _ { n } t ^ { n }$ ; confidence 0.445
198. ; $K = H ^ { n }$ ; confidence 0.445
199. ; $S \subset T ^ { \prime }$ ; confidence 0.445
200. ; $l _ { j t } \leq x _ { j t } \leq u _ { j t }$ ; confidence 0.445
201. ; $\| f \| _ { H ^ { p } } ^ { p } : = \frac { 1 } { 2 \pi } \operatorname { sup } _ { r < 1 } \int _ { - \pi } ^ { \pi } | f ( r e ^ { i \vartheta } ) | ^ { p } d \vartheta$ ; confidence 0.445
202. ; $k \{ a , b , c , d \}$ ; confidence 0.445
203. ; $V = \oplus _ { n \in Z } V _ { ( n ) }$ ; confidence 0.445
204. ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
205. ; $U _ { K } = K \otimes z U _ { Z }$ ; confidence 0.445
206. ; $C _ { - } : = \{ k : \operatorname { Im } k < 0 \}$ ; confidence 0.445
207. ; $U \# , \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k \neq j \}$ ; confidence 0.445
208. ; $P _ { 4 _ { 1 } } ( v , z ) - 1 = ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } = - v ^ { - 2 } ( P _ { 3 } ( v , z ) - 1 ) = - v ^ { 2 } ( P _ { 3 } ( v , z ) - 1 )$ ; confidence 0.445
209. ; $2 ^ { O ( s ( n ) ) }$ ; confidence 0.445
210. ; $- \Delta _ { D i f }$ ; confidence 0.445
211. ; $\{ P _ { \alpha _ { R } , } , \theta \}$ ; confidence 0.445
212. ; $y = ( y _ { 1 } , \dots , y _ { m } ) ^ { T }$ ; confidence 0.445
213. ; $x _ { j } ^ { \prime } \neq 0$ ; confidence 0.445
214. ; $f ( X ) = a _ { n } X ^ { n } + a _ { n - 1 } X ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.445
215. ; $v _ { p } ( n )$ ; confidence 0.445
216. ; $u _ { k } ^ { 0 }$ ; confidence 0.444
217. ; $G \in L$ ; confidence 0.444
218. ; $b _ { j } ^ { n } ( x ) : = \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { j } ( 1 - x ) ^ { n - j } , j = 0 , \ldots , n$ ; confidence 0.444
219. ; $lu _ { + } - \dot { k } ^ { 2 } u _ { + } = 0 , x \in R$ ; confidence 0.444
220. ; $a \preceq b _ { 1 } \ldots b _ { n }$ ; confidence 0.444
221. ; $k = 0,1,2 , \dots$ ; confidence 0.444
222. ; $f = x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 }$ ; confidence 0.444
223. ; $\sigma _ { 1 } \Phi A _ { 2 } - \sigma _ { 2 } \Phi A _ { 1 } = \tilde { \gamma } \Phi$ ; confidence 0.444
224. ; $g ( a , b ) \subseteq 7$ ; confidence 0.444
225. ; $d > 3$ ; confidence 0.444
226. ; $\xi ^ { x }$ ; confidence 0.444
227. ; $( T - t _ { j } I ) ^ { r _ { j } } P _ { j } = 0 \quad ( j = 1 , \ldots , n )$ ; confidence 0.444
228. ; $\alpha = ( \alpha 0 , \dots , \alpha _ { m } )$ ; confidence 0.444
229. ; $x \mapsto \operatorname { gxg } ^ { - 1 }$ ; confidence 0.444
230. ; $R$ ; confidence 0.443
231. ; $D _ { N } ( x , a )$ ; confidence 0.443
232. ; $R \subset H _ { M } ^ { 3 } ( X , Q ( 2 ) )$ ; confidence 0.443
233. ; $E _ { [ m , s ] }$ ; confidence 0.443
234. ; $h _ { K } ( u ) : = \operatorname { max } \{ \langle x , u \rangle : x \in K \}$ ; confidence 0.443
235. ; $d ^ { * } S _ { D }$ ; confidence 0.443
236. ; $\rho _ { X } \circ \pi _ { Y } ( \alpha ) = \rho _ { X } ( \alpha )$ ; confidence 0.443
237. ; $\mu \in H ( C ^ { n } ) ^ { \prime }$ ; confidence 0.443
238. ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443
239. ; $\alpha _ { i } \in R$ ; confidence 0.443
240. ; $V _ { m } ^ { k } ( \Omega )$ ; confidence 0.443
241. ; $1 ( B )$ ; confidence 0.443
242. ; $M$ ; confidence 0.443
243. ; $E _ { z _ { 0 } } ( x , R ) =$ ; confidence 0.443
244. ; $F B ( \sigma _ { B } , G )$ ; confidence 0.443
245. ; $\hat { N } = N _ { 0 } \times ( - 1 , + 1 )$ ; confidence 0.443
246. ; $\phi _ { 0 } , \phi _ { 1 } , \ldots$ ; confidence 0.443
247. ; $r g _ { 1 } \simeq g$ ; confidence 0.443
248. ; $K s ( w , z ) = [ 1 - S ( z ) \overline { S ( w ) } ] / ( 1 - z \overline { w } )$ ; confidence 0.443
249. ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { lop } } f ( x ) d s : = R f$ ; confidence 0.443
250. ; $D _ { k } = U ( a ) \otimes _ { C } \wedge ^ { k } ( a )$ ; confidence 0.442
251. ; $z ^ { i }$ ; confidence 0.442
252. ; $\alpha _ { 1 } ( S _ { n } - S ) + \alpha _ { 2 } ( S _ { n + 1 } - S ) = 0$ ; confidence 0.442
253. ; $\{ ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.442
254. ; $k = C$ ; confidence 0.442
255. ; $X _ { 1 } , \dots , X _ { n } , \dots$ ; confidence 0.442
256. ; $\| B ( x , y ) \| _ { + } \leq c \sum _ { j = 1 } ^ { \infty } \| \lambda ; \varphi ; ( x ) \| _ { + } =$ ; confidence 0.442
257. ; $L = \left( \begin{array} { c c c c c } { m _ { 1 } } & { m _ { 2 } } & { \ldots } & { \ldots } & { m _ { k } } \\ { p _ { 1 } } & { 0 } & { \ldots } & { \ldots } & { 0 } \\ { 0 } & { p _ { 2 } } & { 0 } & { \ldots } & { 0 } \\ { \vdots } & { \square } & { \ddots } & { \square } & { \vdots } \\ { 0 } & { \ldots } & { 0 } & { p _ { k - 1 } } & { 0 } \end{array} \right)$ ; confidence 0.442
258. ; $P _ { m , K }$ ; confidence 0.442
259. ; $\infty =$ ; confidence 0.442
260. ; $I _ { S }$ ; confidence 0.442
261. ; $E = ( E _ { X } , E _ { y } , E _ { z } )$ ; confidence 0.442
262. ; $G _ { i n n } < G$ ; confidence 0.442
263. ; $\langle D | f \rangle = ( - 1 ) ^ { | f | } - _ { z } | f | - \operatorname { com } ( D _ { f , 1 } ) - \operatorname { com } ( D _ { f , 2 } ) + \operatorname { com } ( D )$ ; confidence 0.442
264. ; $( \vec { G } , \vec { c } )$ ; confidence 0.442
265. ; $( K _ { ( 1 ) } , \dots , K _ { ( n ) } )$ ; confidence 0.442
266. ; $R = \sum a _ { i } \otimes b _ { 2 }$ ; confidence 0.441
267. ; $= \int _ { \Omega } \int _ { R ^ { d } } \varphi ( x , \lambda ) d \nu _ { x } ( \lambda ) d x$ ; confidence 0.441
268. ; $\phi _ { N } ( z ) = \kappa _ { X } f _ { X } ( z ) +$ ; confidence 0.441
269. ; $x \leftrightarrow T$ ; confidence 0.441
270. ; $f ^ { \rho } = \alpha _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m }$ ; confidence 0.441
271. ; $\square ^ { 11 } \Gamma$ ; confidence 0.441
272. ; $H \times C ^ { 2 }$ ; confidence 0.441
273. ; $Y$ ; confidence 0.441
274. ; $1 > n$ ; confidence 0.441
275. ; $u = e ^ { i k \alpha x } + v , \operatorname { lim } _ { r \rightarrow \infty } \int _ { | s | = r } | \frac { \partial v } { \partial | x | } - i k v | ^ { 2 } d s = 0$ ; confidence 0.441
276. ; $S _ { p }$ ; confidence 0.441
277. ; $P \cup R$ ; confidence 0.441
278. ; $\int _ { - \infty } ^ { \infty } | f | | r | d x < \infty$ ; confidence 0.441
279. ; $d > 1$ ; confidence 0.441
280. ; $g ( \overline { u } _ { 1 } ) = v ^ { * } = \overline { q } = v _ { N }$ ; confidence 0.440
281. ; $A = 2$ ; confidence 0.440
282. ; $Q _ { N } ( T _ { g } ( z ) ) - q ^ { - x }$ ; confidence 0.440
283. ; $G = ( D _ { B } ^ { 4 } )$ ; confidence 0.440
284. ; $6$ ; confidence 0.440
285. ; $I _ { X }$ ; confidence 0.440
286. ; $\lambda = \frac { ( 1 - \alpha ) ( k + d n _ { k } ) } { ( k + m _ { k } ) }$ ; confidence 0.440
287. ; $\xi _ { 1 } , \dots , \xi _ { n } + 1$ ; confidence 0.440
288. ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
289. ; $\sum _ { j \geq 1 } | e _ { j } | ^ { \gamma } \leq L _ { \gamma , n } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.440
290. ; $D = \sum _ { k = 1 } ^ { \gamma } a _ { k } D _ { k }$ ; confidence 0.440
291. ; $( S _ { n + m + 1 } )$ ; confidence 0.440
292. ; $K$ ; confidence 0.440
293. ; $k : = \{ K ( a , b ) \} _ { span }$ ; confidence 0.440
294. ; $x \in R ^ { x }$ ; confidence 0.440
295. ; $L _ { k } ( a )$ ; confidence 0.440
296. ; $B \times H \nsim B ^ { * }$ ; confidence 0.440
297. ; $e ^ { x } \alpha + 1$ ; confidence 0.439
298. ; $p ^ { A }$ ; confidence 0.439
299. ; $Q \in N ^ { m }$ ; confidence 0.439
300. ; $- \sum _ { k = 1 } ^ { s } e _ { k } D _ { k }$ ; confidence 0.439
Maximilian Janisch/latexlist/latex/NoNroff/61. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/61&oldid=45855