Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/41"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 41 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 2: Line 2:
 
1. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003066.png ; $x \in [ 0,1 ] \backslash E$ ; confidence 0.797
 
1. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003066.png ; $x \in [ 0,1 ] \backslash E$ ; confidence 0.797
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240535.png ; $k ( X _ { 2 } ) = p$ ; confidence 0.797
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240535.png ; $\operatorname{rank} (\mathbf{X} _ { 2 } ) = p$ ; confidence 0.797
  
3. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003040.png ; $B = ( C ^ { \infty } ( \Omega ) ) ^ { N }$ ; confidence 0.797
+
3. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003040.png ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.797
  
4. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023079.png ; $u _ { t } + u u _ { X } = \mu u _ { X X }$ ; confidence 0.797
+
4. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023079.png ; $u _ { t } + u u _ { x } = \mu u _ { xx }$ ; confidence 0.797
  
5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015055.png ; $D _ { j k } ^ { i }$ ; confidence 0.797
+
5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015055.png ; $\mathcal{D} _ { j k \text{l} } ^ { i }$ ; confidence 0.797
  
 
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110203.png ; $G _ { X }$ ; confidence 0.797
 
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110203.png ; $G _ { X }$ ; confidence 0.797
Line 14: Line 14:
 
7. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010038.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( T , - )$ ; confidence 0.797
 
7. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010038.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( T , - )$ ; confidence 0.797
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015034.png ; $\operatorname { Cov } _ { P } ( d ^ { * } , d _ { 0 } ) = 0$ ; confidence 0.797
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015034.png ; $\operatorname { Cov } _ { \mathsf{P} } ( d ^ { * } , d _ { 0 } ) = 0$ ; confidence 0.797
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027053.png ; $x _ { j } ^ { \prime } \rightarrow x$ ; confidence 0.796
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027053.png ; $x _ { n_j } ^ { \prime } \rightarrow x$ ; confidence 0.796
  
 
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200804.png ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796
 
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200804.png ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003011.png ; $f ( t , . ) : G \rightarrow R ^ { m }$ ; confidence 0.796
+
11. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003011.png ; $f ( t , . ) : G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.796
  
12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110137.png ; $\frac { D v } { D t } = \frac { \partial v } { \partial t } + \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } v ) \times v$ ; confidence 0.796
+
12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110137.png ; $\frac { D \mathbf{v} } { D t } = \frac { \partial \mathbf{v} } { \partial t } + \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } \mathbf{v} ) \times \mathbf{v}.$ ; confidence 0.796
  
13. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013092.png ; $H ^ { T }$ ; confidence 0.796
+
13. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013092.png ; $\operatorname{End}_{\mathcal{H}}  T $ ; confidence 0.796
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015081.png ; $Ad ^ { * } : G \rightarrow GL ( g ^ { * } )$ ; confidence 0.796
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015081.png ; $\operatorname{Ad} ^ { * } : G \rightarrow \operatorname{GL} ( \mathfrak{g} ^ { * } )$ ; confidence 0.796
  
15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes \mathcal{K} ( \mathcal{H} )$ ; confidence 0.796
  
 
16. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796
 
16. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796
Line 34: Line 34:
 
17. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016014.png ; $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.796
 
17. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016014.png ; $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.796
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a1105909.png ; $n \in N$ ; confidence 0.796
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a1105909.png ; $n \in \mathbf N$ ; confidence 0.796
  
19. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001037.png ; $x ( n ) = \frac { 1 } { 2 \pi i } \oint _ { c } x ( z ) z ^ { n - 1 } d z$ ; confidence 0.796
+
19. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001037.png ; $x ( n ) = \frac { 1 } { 2 \pi i } \oint _ { c } \widetilde{x} ( z ) z ^ { n - 1 } d z$ ; confidence 0.796
  
 
20. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051070/i05107026.png ; $\alpha _ { N }$ ; confidence 0.796
 
20. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051070/i05107026.png ; $\alpha _ { N }$ ; confidence 0.796
  
21. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030109.png ; $\tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }$ ; confidence 0.795
+
21. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030109.png ; $\tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }.$ ; confidence 0.795
  
22. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010048.png ; $\phi ^ { 2 } = id$ ; confidence 0.795
+
22. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010048.png ; $\phi ^ { 2 } = \operatorname{id}$ ; confidence 0.795
  
23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004050.png ; $C \ni \xi ^ { 0 }$ ; confidence 0.795
+
23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004050.png ; $\mathcal{C} \ni \xi ^ { 0 }$ ; confidence 0.795
  
24. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011035.png ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}$ ; confidence 0.795
+
24. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011035.png ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}.$ ; confidence 0.795
  
 
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053070.png ; $2 ^ { r }$ ; confidence 0.795
 
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053070.png ; $2 ^ { r }$ ; confidence 0.795
Line 52: Line 52:
 
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060127.png ; $[ 0 , Z + ( \text { const } ) K ]$ ; confidence 0.795
 
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060127.png ; $[ 0 , Z + ( \text { const } ) K ]$ ; confidence 0.795
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025051.png ; $[ Q _ { N } ] ^ { - 1 }$ ; confidence 0.795
+
27. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025051.png ; $[ Q _ { n } ] ^ { - 1 }$ ; confidence 0.795
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070113.png ; $\alpha \in R$ ; confidence 0.795
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070113.png ; $\alpha \in \mathbf{R}$ ; confidence 0.795
  
 
29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016043.png ; $\pi _ { k } ( T )$ ; confidence 0.795
 
29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016043.png ; $\pi _ { k } ( T )$ ; confidence 0.795
  
30. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005083.png ; $h : T \rightarrow C$ ; confidence 0.795
+
30. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005083.png ; $h : \mathbf{T} \rightarrow \mathbf{C}$ ; confidence 0.795
  
31. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002035.png ; $P ( \theta , \mu )$ ; confidence 0.795
+
31. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002035.png ; $\mathsf{P} ( \theta , \mu )$ ; confidence 0.795
  
32. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001034.png ; $I ( v , w )$ ; confidence 0.795
+
32. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001034.png ; $\mathcal{I}_{ ( v , w )}$ ; confidence 0.795
  
 
33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013021.png ; $x$ ; confidence 0.795
 
33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013021.png ; $x$ ; confidence 0.795
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( \mathbf{Z} _ { 1 } )$ ; confidence 0.795
  
 
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180439.png ; $k = - 1 + n / 2$ ; confidence 0.795
 
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180439.png ; $k = - 1 + n / 2$ ; confidence 0.795
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013023.png ; $\| f \| _ { p } , G$ ; confidence 0.795
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013023.png ; $\| f \| _ { p , G}$ ; confidence 0.795
  
37. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007065.png ; $u ( x , y 0 , k )$ ; confidence 0.795
+
37. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007065.png ; $u ( x , y_{0} , k )$ ; confidence 0.795
  
38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150129.png ; $d ^ { * } : \Omega \rightarrow R$ ; confidence 0.795
+
38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150129.png ; $d ^ { * } : \Omega \rightarrow \mathbf{R}$ ; confidence 0.795
  
39. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080217.png ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p$ ; confidence 0.795
+
39. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080217.png ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p,$ ; confidence 0.795
  
40. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005093.png ; $H$ ; confidence 0.794
+
40. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005093.png ; $H_{\text{new}}$ ; confidence 0.794
  
 
41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020012.png ; $D ^ { k + 1 } \times D ^ { m - k }$ ; confidence 0.794
 
41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020012.png ; $D ^ { k + 1 } \times D ^ { m - k }$ ; confidence 0.794
  
42. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840103.png ; $L = \{ x _ { + } + K _ { L } x _ { + } : x _ { + } \in K _ { + } \}$ ; confidence 0.794
+
42. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840103.png ; $\mathcal{L} = \{ x _ { + } + K _ { \mathcal{L} } x _ { + } : x _ { + } \in \mathcal{K} _ { + } \}$ ; confidence 0.794
  
 
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157109.png ; $q \geq 1$ ; confidence 0.794
 
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157109.png ; $q \geq 1$ ; confidence 0.794
Line 88: Line 88:
 
44. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663071.png ; $f ^ { ( s ) }$ ; confidence 0.794
 
44. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663071.png ; $f ^ { ( s ) }$ ; confidence 0.794
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950147.png ; $T$ ; confidence 0.794
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950147.png ; $\tau_i$ ; confidence 0.794
  
46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021012.png ; $1$ ; confidence 0.794
+
46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021012.png ; $\mathfrak n$ ; confidence 0.794
  
 
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007059.png ; $\sigma _ { 1 } = 1.17628 \ldots$ ; confidence 0.794
 
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007059.png ; $\sigma _ { 1 } = 1.17628 \ldots$ ; confidence 0.794
  
48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003046.png ; $DB _ { 1 }$ ; confidence 0.794
+
48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003046.png ; $\operatorname{DB} _ { 1 }$ ; confidence 0.794
  
49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004080.png ; $\Delta t \nmid 2$ ; confidence 0.794
+
49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004080.png ; $\Delta t / 2$ ; confidence 0.794
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012010.png ; $b _ { j }$ ; confidence 0.794
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012010.png ; $b _ {ij }$ ; confidence 0.794
  
 
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007070.png ; $1 \leq m < n$ ; confidence 0.794
 
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007070.png ; $1 \leq m < n$ ; confidence 0.794
  
52. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019035.png ; $R = L L$ ; confidence 0.794
+
52. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019035.png ; $\mathcal{R} = \mathcal{L}. \mathcal{L}$ ; confidence 0.794
  
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090260.png ; $1 = | \Sigma |$ ; confidence 0.794
+
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090260.png ; $\mathbf{l} = | \Sigma |$ ; confidence 0.794
  
54. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006042.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots$ ; confidence 0.794
+
54. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006042.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots ,$ ; confidence 0.794
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022099.png ; $f ( t _ { n } , x , \xi ) = M ( u ^ { n } ( x ) , \xi )$ ; confidence 0.794
+
55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022099.png ; $f ( t _ { n } , x , \xi ) = M ( u ^ { n } ( x ) , \xi ).$ ; confidence 0.794
  
56. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794
+
56. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K \text{l} ( f ^ { \prime } ( x ) ) ^ { n },$ ; confidence 0.794
  
 
57. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
 
57. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
  
58. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080164.png ; $Y ( \gamma ) = \psi ( z _ { 0 } , z _ { 0 } ) | _ { \gamma } = P \operatorname { exp } ( \oint _ { \gamma } A )$ ; confidence 0.794
+
58. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080164.png ; $\mathcal{Y} ( \gamma ) = \psi ( z _ { 0 } , \overline{z} _ { 0 } ) | _ { \gamma } = P \operatorname { exp } ( \oint _ { \gamma } \mathcal{A} )$ ; confidence 0.794
  
59. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201509.png ; $g x$ ; confidence 0.794
+
59. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201509.png ; $g.x$ ; confidence 0.794
  
 
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230134.png ; $X = ( X _ { 1 } , \dots , X _ { r } )$ ; confidence 0.794
 
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230134.png ; $X = ( X _ { 1 } , \dots , X _ { r } )$ ; confidence 0.794
  
61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030091.png ; $( H ) < \infty$ ; confidence 0.794
+
61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030091.png ; $\dim ( \mathcal{H} ) < \infty$ ; confidence 0.794
  
62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012024.png ; $U F : U C \rightarrow U C ^ { \prime }$ ; confidence 0.794
+
62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012024.png ; $U F : U \mathcal C \rightarrow U \mathcal C ^ { \prime }$ ; confidence 0.794
  
63. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350254.png ; $t = S$ ; confidence 0.794
+
63. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350254.png ; $t = s$ ; confidence 0.794
  
 
64. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032014.png ; $T = 0$ ; confidence 0.794
 
64. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032014.png ; $T = 0$ ; confidence 0.794
Line 130: Line 130:
 
65. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003052.png ; $x \in V ^ { \pm }$ ; confidence 0.794
 
65. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003052.png ; $x \in V ^ { \pm }$ ; confidence 0.794
  
66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090406.png ; $d \lambda _ { \mu }$ ; confidence 0.794
+
66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090406.png ; $d_{ \lambda \mu }$ ; confidence 0.794
  
 
67. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020226.png ; $\Phi x = x - F x$ ; confidence 0.793
 
67. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020226.png ; $\Phi x = x - F x$ ; confidence 0.793
Line 136: Line 136:
 
68. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702045.png ; $F = ( F _ { n } )$ ; confidence 0.793
 
68. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702045.png ; $F = ( F _ { n } )$ ; confidence 0.793
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302809.png ; $| a _ { n } + 1 - b _ { n } + 1 | < \frac { 1 } { 2 } | a _ { n } - b _ { n } |$ ; confidence 0.793
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302809.png ; $| a _ { n } + 1 - b _ { n + 1} | < \frac { 1 } { 2 } | a _ { n } - b _ { n } |.$ ; confidence 0.793
  
 
70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110130.png ; $\operatorname { Im } \zeta ^ { 2 } = \pm \pi$ ; confidence 0.793
 
70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110130.png ; $\operatorname { Im } \zeta ^ { 2 } = \pm \pi$ ; confidence 0.793
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660132.png ; $<$ ; confidence 0.793
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660132.png ; $\leq$ ; confidence 0.793
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032065.png ; $= F ( s , t ) \| \frac { r } { F ( s , t ) } x + z \| =$ ; confidence 0.793
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032065.png ; $= F ( s , t ) \left\| \frac { r } { F ( s , t ) } x + z \right\| =$ ; confidence 0.793
  
 
73. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110143.png ; $a \neq 1 / 2$ ; confidence 0.793
 
73. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110143.png ; $a \neq 1 / 2$ ; confidence 0.793
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240474.png ; $X _ { 1 }$ ; confidence 0.793
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240474.png ; $\mathbf{X} _ { 1 }$ ; confidence 0.793
  
 
75. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004031.png ; $P _ { 4 _ { 1 } } = v ^ { - 2 } - 1 + v ^ { 2 } - z ^ { 2 }$ ; confidence 0.793
 
75. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004031.png ; $P _ { 4 _ { 1 } } = v ^ { - 2 } - 1 + v ^ { 2 } - z ^ { 2 }$ ; confidence 0.793
Line 152: Line 152:
 
76. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019023.png ; $C _ { S } ( t )$ ; confidence 0.793
 
76. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019023.png ; $C _ { S } ( t )$ ; confidence 0.793
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a011800100.png ; $NP$ ; confidence 0.793
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a011800100.png ; $\operatorname{NP}$ ; confidence 0.793
  
78. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021970/c02197031.png ; $C [ 0,1$ ; confidence 0.793
+
78. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021970/c02197031.png ; $C [ 0,1]$ ; confidence 0.793
  
 
79. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070146.png ; $\int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) = G ( t )$ ; confidence 0.793
 
79. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070146.png ; $\int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) = G ( t )$ ; confidence 0.793
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015042.png ; $X \in q$ ; confidence 0.793
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015042.png ; $X \in \mathfrak g $ ; confidence 0.793
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $\operatorname{MS} _ { e } = \operatorname{SS} _ { e } / ( n - r )$ ; confidence 0.793
  
82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow c$ ; confidence 0.793
+
82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow C$ ; confidence 0.793
  
83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016068.png ; $[ 2 ^ { O ( s ( n ) ) } ]$ ; confidence 0.793
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016068.png ; $\operatorname{DTIME}[ 2 ^ { O ( s ( n ) ) } ]$ ; confidence 0.793
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004073.png ; $V _ { N } \subset U _ { N }$ ; confidence 0.793
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004073.png ; $V _ { n } \subset U _ { n }$ ; confidence 0.793
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240310.png ; $\eta i$ ; confidence 0.793
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240310.png ; $\eta_{ij}$ ; confidence 0.793
  
 
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027053.png ; $K _ { 1 } ( X )$ ; confidence 0.793
 
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027053.png ; $K _ { 1 } ( X )$ ; confidence 0.793
Line 174: Line 174:
 
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090108.png ; $\lambda _ { p } ( K / k ) \geq 0$ ; confidence 0.793
 
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090108.png ; $\lambda _ { p } ( K / k ) \geq 0$ ; confidence 0.793
  
88. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003074.png ; $\Pi ( \alpha ) = 2 \operatorname { arctan } e ^ { - \alpha }$ ; confidence 0.793
+
88. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003074.png ; $\Pi ( a ) = 2 \operatorname { arc}  \operatorname{tan } e ^ { - a }$ ; confidence 0.793
  
89. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009067.png ; $\Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } )$ ; confidence 0.793
+
89. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009067.png ; $\Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ).$ ; confidence 0.793
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034039.png ; $W _ { k } ( M ) = R K / C _ { k + 1 }$ ; confidence 0.793
+
90. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034039.png ; $W _ { k } ( M ) = R \mathcal{K} / C _ { k + 1 }.$ ; confidence 0.793
  
91. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840375.png ; $K = L _ { 2 , r }$ ; confidence 0.792
+
91. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840375.png ; $\mathcal{K} = L _ { 2 , r }$ ; confidence 0.792
  
 
92. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019042.png ; $( N / L , [ L ] )$ ; confidence 0.792
 
92. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019042.png ; $( N / L , [ L ] )$ ; confidence 0.792
Line 188: Line 188:
 
94. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005050.png ; $\varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x$ ; confidence 0.792
 
94. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005050.png ; $\varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x$ ; confidence 0.792
  
95. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010020.png ; $z \in \hat { K } \leftrightarrow m _ { z }$ ; confidence 0.792
+
95. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010020.png ; $z \in \widehat { K } \leftrightarrow m _ { z },$ ; confidence 0.792
  
 
96. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020102.png ; $y _ { 0 } \in G ( y _ { 0 } )$ ; confidence 0.792
 
96. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020102.png ; $y _ { 0 } \in G ( y _ { 0 } )$ ; confidence 0.792
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120100.png ; $B _ { 1,1 } ^ { 1 } \subset A ^ { * } \subset B _ { 2,1 } ^ { 1 / 2 }$ ; confidence 0.792
+
97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120100.png ; $B _ { 1,1 } ^ { 1 } \subset \mathcal{A} ^ { * } \subset B _ { 2,1 } ^ { 1 / 2 }$ ; confidence 0.792
  
98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014016.png ; $CS$ ; confidence 0.792
+
98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014016.png ; $\operatorname{CS}$ ; confidence 0.792
  
 
99. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583072.png ; $i A _ { 0 }$ ; confidence 0.792
 
99. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583072.png ; $i A _ { 0 }$ ; confidence 0.792
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043066.png ; $S _ { y } = - y$ ; confidence 0.792
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043066.png ; $S _ { y } = - y,$ ; confidence 0.792
  
 
101. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430138.png ; $Y _ { 1 }$ ; confidence 0.792
 
101. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430138.png ; $Y _ { 1 }$ ; confidence 0.792
Line 206: Line 206:
 
103. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010085.png ; $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ ; confidence 0.791
 
103. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010085.png ; $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ ; confidence 0.791
  
104. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301306.png ; $k = ( k _ { 1 } , \dots , k _ { n } )$ ; confidence 0.791
+
104. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301306.png ; $\mathbf{k} = ( k _ { 1 } , \dots , k _ { n } )$ ; confidence 0.791
  
 
105. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050110.png ; $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ ; confidence 0.791
 
105. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050110.png ; $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ ; confidence 0.791
Line 212: Line 212:
 
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009032.png ; $\langle G , t : t ^ { - 1 } A t = B , \mu \rangle$ ; confidence 0.791
 
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009032.png ; $\langle G , t : t ^ { - 1 } A t = B , \mu \rangle$ ; confidence 0.791
  
107. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011021.png ; $\Xi ( t ) : = \xi ( \frac { 1 } { 2 } + i t )$ ; confidence 0.791
+
107. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011021.png ; $\Xi ( t ) : = \xi \left( \frac { 1 } { 2 } + i t \right).$ ; confidence 0.791
  
108. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201305.png ; $Q _ { 2 } i - 1 _ { ( n + 1 ) - 1 }$ ; confidence 0.791
+
108. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201305.png ; $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ ; confidence 0.791
  
109. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013050.png ; $\lambda \in SP ( n )$ ; confidence 0.791
+
109. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013050.png ; $\lambda \in \operatorname{SP} ( n )$ ; confidence 0.791
  
 
110. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020038.png ; $[ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }$ ; confidence 0.791
 
110. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020038.png ; $[ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }$ ; confidence 0.791
  
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230134.png ; $\frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma L ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ) +$ ; confidence 0.791
+
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230134.png ; $+ \frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma L ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ) +$ ; confidence 0.791
  
 
112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017042.png ; $\phi ( . , . )$ ; confidence 0.791
 
112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017042.png ; $\phi ( . , . )$ ; confidence 0.791
Line 226: Line 226:
 
113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004086.png ; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791
 
113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004086.png ; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791
  
114. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.791
+
114. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\widehat { \phi } ( j ) = \alpha_j$ ; confidence 0.791
  
 
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027033.png ; $\{ \phi _ { n } \} \subset X$ ; confidence 0.791
 
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027033.png ; $\{ \phi _ { n } \} \subset X$ ; confidence 0.791
Line 232: Line 232:
 
116. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033760/d03376067.png ; $D ^ { + }$ ; confidence 0.791
 
116. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033760/d03376067.png ; $D ^ { + }$ ; confidence 0.791
  
117. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006088.png ; $g ( t ) : = - \frac { 2 } { \pi } \int _ { 0 } ^ { \infty } \delta ( k ) \operatorname { sin } ( k t ) d k$ ; confidence 0.791
+
117. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006088.png ; $g ( t ) : = - \frac { 2 } { \pi } \int _ { 0 } ^ { \infty } \delta ( k ) \operatorname { sin } ( k t ) d k,$ ; confidence 0.791
  
118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018045.png ; $8 ^ { 2 } E$ ; confidence 0.791
+
118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018045.png ; $\otimes ^ { 2 } \mathcal{E}$ ; confidence 0.791
  
 
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791
 
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791
  
120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044015.png ; $\pi * ( D X \wedge Y ) \simeq [ X , Y ] *$ ; confidence 0.791
+
120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044015.png ; $\pi_{ *} ( D X \wedge Y ) \simeq [ X , Y ]_* $ ; confidence 0.791
  
 
121. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090227.png ; $w \in \Omega$ ; confidence 0.791
 
121. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090227.png ; $w \in \Omega$ ; confidence 0.791
  
122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015010.png ; $\varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi ( \frac { y - x } { \varepsilon } )$ ; confidence 0.791
+
122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015010.png ; $\varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi \left( \frac { y - x } { \varepsilon } \right).$ ; confidence 0.791
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420166.png ; $\Psi _ { \langle V , \lambda \rangle , \langle W , \mu \rangle } = \lambda _ { W }$ ; confidence 0.791
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420166.png ; $\Psi _ { ( V , \lambda ) , ( W , \mu ) } = \lambda _ { W }$ ; confidence 0.791
  
124. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032500/d03250046.png ; $< \epsilon$ ; confidence 0.790
+
124. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032500/d03250046.png ; $\leq \epsilon$ ; confidence 0.790
  
 
125. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045030.png ; $F _ { X } ( X )$ ; confidence 0.790
 
125. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045030.png ; $F _ { X } ( X )$ ; confidence 0.790
  
126. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232705.png ; $A \subset A$ ; confidence 0.790
+
126. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232705.png ; $A \subseteq \overline{A}$ ; confidence 0.790
  
127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180145.png ; $\theta \otimes \theta \in S ^ { 2 } E$ ; confidence 0.790
+
127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180145.png ; $\theta \otimes \theta \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.790
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031094.png ; $\sqrt { P }$ ; confidence 0.790
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031094.png ; $\operatorname{Dist} \mathcal{NP}$ ; confidence 0.790
  
 
129. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003021.png ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790
 
129. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003021.png ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790
  
130. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100100.png ; $\sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E$ ; confidence 0.790
+
130. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100100.png ; $\sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E.$ ; confidence 0.790
  
 
131. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070196.png ; $\mathfrak { R } ( C , P )$ ; confidence 0.790
 
131. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070196.png ; $\mathfrak { R } ( C , P )$ ; confidence 0.790
  
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009068.png ; $\mu ^ { * } f ( z ) = \mu ( \zeta \mapsto f ( z + \zeta ) )$ ; confidence 0.790
+
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009068.png ; $\mu ^ { * } f ( z ) = \mu ( \zeta \mapsto f ( z + \zeta ) ).$ ; confidence 0.790
  
 
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790
 
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790
Line 276: Line 276:
 
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180142.png ; $\tau _ { 2 } g = g$ ; confidence 0.790
 
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180142.png ; $\tau _ { 2 } g = g$ ; confidence 0.790
  
139. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201018.png ; $E _ { n } + 1$ ; confidence 0.790
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201018.png ; $E _ { n + 1}$ ; confidence 0.790
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240155.png ; $c ^ { \prime } \beta$ ; confidence 0.790
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240155.png ; $\mathbf{c} ^ { \prime } \beta$ ; confidence 0.790
  
141. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510150.png ; $D = \{ u \in V : \sigma ( u ) = \infty ( K ) , 0 \notin K \} , N = \{ u \in V : 0 < \sigma ( u ) < \infty \} U$ ; confidence 0.790
+
141. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510150.png ; $\mathcal{D} = \{ \mathbf{u} \in V : \sigma ( \mathbf{u} ) = \infty ( K ) , 0 \notin K \} , \mathcal{N} = \{ \mathbf{u} \in V : 0 < \sigma ( \mathbf{u} ) < \infty \} \bigcup$ ; confidence 0.790
  
 
142. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001039.png ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790
 
142. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001039.png ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i }$ ; confidence 0.789
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i } \text{(regional constraint)},$ ; confidence 0.789
  
144. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110180.png ; $m - 1$ ; confidence 0.789
+
144. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110180.png ; $a_{m - 1}$ ; confidence 0.789
  
145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009020.png ; $( E ^ { \otimes \gamma } )$ ; confidence 0.789
+
145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009020.png ; $\operatorname{End}_{K}( E ^ { \otimes r } )$ ; confidence 0.789
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha } + \beta$ ; confidence 0.789
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta}$ ; confidence 0.789
  
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024070.png ; $\overline { t } _ { 0 } : = \operatorname { inf } _ { t \geq t _ { 0 } } [ t - h ( t ) ] > - \infty$ ; confidence 0.789
+
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024070.png ; $\overline { t } _ { 0 } : = \operatorname { inf } _ { t \geq t _ { 0 } } [ t - h ( t ) ] > - \infty.$ ; confidence 0.789
  
148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024053.png ; $\varepsilon$ ; confidence 0.789
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024053.png ; $\varepsilon_i$ ; confidence 0.789
  
149. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006068.png ; $\{ \lambda > 0 : \sum _ { | \alpha | = k - 1 } \int _ { \partial \Omega \times \partial \Omega } \Phi ( \frac { \Delta y - x F ( x ) } { | y - x | } ) \eta ( x , y ) \leq 1 \}$ ; confidence 0.789
+
149. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006068.png ; $\left\{ \lambda > 0 : \sum _ { | \alpha | = k - 1 } \int _ { \partial \Omega \times \partial \Omega } \Phi \left( \frac { \Delta_{ y - x} F ( x ) } { | y - x | } \right) \eta ( x , y ) \leq 1 \right\},$ ; confidence 0.789
  
 
150. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007050.png ; $\forall \alpha \in S ^ { 2 }$ ; confidence 0.789
 
150. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007050.png ; $\forall \alpha \in S ^ { 2 }$ ; confidence 0.789
  
151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005052.png ; $\sigma _ { T } ( A , X )$ ; confidence 0.789
+
151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005052.png ; $\sigma _ { \text{T} } ( A , \mathcal X )$ ; confidence 0.789
  
152. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001059.png ; $f \in Q [ x ]$ ; confidence 0.789
+
152. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001059.png ; $f \in \mathbf Q [ x ]$ ; confidence 0.789
  
153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120115.png ; $p \in T$ ; confidence 0.789
+
153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120115.png ; $\operatorname{p} \in T$ ; confidence 0.789
  
 
154. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020242.png ; $g ( \overline { u } _ { 1 } ) < v _ { M } = \overline { q }$ ; confidence 0.789
 
154. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020242.png ; $g ( \overline { u } _ { 1 } ) < v _ { M } = \overline { q }$ ; confidence 0.789
  
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003020.png ; $1 \times 6$ ; confidence 0.789
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003020.png ; $I \times G$ ; confidence 0.789
  
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510115.png ; $1 = \infty ( L )$ ; confidence 0.789
+
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510115.png ; $\operatorname{l} = \infty ( L )$ ; confidence 0.789
  
 
157. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001041.png ; $x \neq e$ ; confidence 0.789
 
157. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001041.png ; $x \neq e$ ; confidence 0.789
Line 316: Line 316:
 
158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182064.png ; $\phi _ { i }$ ; confidence 0.789
 
158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182064.png ; $\phi _ { i }$ ; confidence 0.789
  
159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013050.png ; $\tau _ { N } ( x - [ z ] , y )$ ; confidence 0.788
+
159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013050.png ; $\tau _ { n } ( x - [ z ] , y )$ ; confidence 0.788
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024028.png ; $f$ ; confidence 0.788
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024028.png ; $\operatorname{det} f$ ; confidence 0.788
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a1202505.png ; $PG ( 2 , q )$ ; confidence 0.788
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a1202505.png ; $\operatorname{PG} ( 2 , q )$ ; confidence 0.788
  
 
162. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666305.png ; $r = ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.788
 
162. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666305.png ; $r = ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.788
Line 326: Line 326:
 
163. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230134.png ; $( ( K _ { X ^ { \prime } } + B ^ { \prime } ) . C ) \geq 0$ ; confidence 0.788
 
163. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230134.png ; $( ( K _ { X ^ { \prime } } + B ^ { \prime } ) . C ) \geq 0$ ; confidence 0.788
  
164. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000209.png ; $\rho = [ [ N ] ] _ { \rho }$ ; confidence 0.788
+
164. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000209.png ; $[[M]]_{\rho} = [ [ N ] ] _ { \rho }$ ; confidence 0.788
  
165. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018013.png ; $\times \operatorname { exp } \{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( x ) } \frac { e ^ { s } - 1 } { s } d s \} \quad ( u > 1 )$ ; confidence 0.788
+
165. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018013.png ; $\times \operatorname { exp } \left\{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( u ) } \frac { e ^ { s } - 1 } { s } d s \right\} \quad ( u > 1 ),$ ; confidence 0.788
  
 
166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002084.png ; $s _ { j } ( T )$ ; confidence 0.788
 
166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002084.png ; $s _ { j } ( T )$ ; confidence 0.788
  
167. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005045.png ; $P \subset M ^ { x }$ ; confidence 0.788
+
167. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005045.png ; $P \subset M ^ { n }$ ; confidence 0.788
  
 
168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232028.png ; $S _ { n } ( x _ { 0 } , \rho )$ ; confidence 0.788
 
168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232028.png ; $S _ { n } ( x _ { 0 } , \rho )$ ; confidence 0.788
  
169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025038.png ; $g : K \rightarrow U ^ { \prime }$ ; confidence 0.788
+
169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025038.png ; $g : K \rightarrow U ^ { \prime \prime }$ ; confidence 0.788
  
170. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008053.png ; $\frac { 1 } { 2 L } \int _ { - L } ^ { L } \phi d t _ { i } = \langle \phi \rangle = ( \frac { 1 } { 2 \pi } ) ^ { 2 g } \int \ldots \int \phi d ^ { 2 g } \theta$ ; confidence 0.788
+
170. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008053.png ; $\frac { 1 } { 2 L } \int _ { - L } ^ { L } \phi d t _ { i } = \langle \phi \rangle = \left( \frac { 1 } { 2 \pi } \right) ^ { 2 g } \int \ldots \int \phi d ^ { 2 g } \theta .$ ; confidence 0.788
  
171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340103.png ; $( x , u \in v )$ ; confidence 0.788
+
171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340103.png ; $( x , u \sharp v )$ ; confidence 0.788
  
 
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042041.png ; $\Psi$ ; confidence 0.788
 
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042041.png ; $\Psi$ ; confidence 0.788
Line 348: Line 348:
 
174. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003036.png ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787
 
174. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003036.png ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027018.png ; $T _ { X } = f , \quad x \in X , f \in Y$ ; confidence 0.787
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027018.png ; $T _ { x } = f , \quad x \in X , f \in Y.$ ; confidence 0.787
  
 
176. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019084.png ; $r \neq s$ ; confidence 0.787
 
176. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019084.png ; $r \neq s$ ; confidence 0.787
Line 358: Line 358:
 
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036035.png ; $a , b , c , d$ ; confidence 0.787
 
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036035.png ; $a , b , c , d$ ; confidence 0.787
  
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040116.png ; $\sum _ { \lambda } s _ { \lambda } ( x ) s _ { \lambda ^ { \prime } } ( y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } )$ ; confidence 0.787
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040116.png ; $\sum _ { \lambda } s _ { \lambda } ( \mathbf x ) s _ { \lambda ^ { \prime } } ( \mathbf y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } ).$ ; confidence 0.787
  
 
181. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006049.png ; $D \alpha D$ ; confidence 0.787
 
181. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006049.png ; $D \alpha D$ ; confidence 0.787
Line 364: Line 364:
 
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787
 
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787
  
183. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301103.png ; $\Gamma : = \oint \vec { U } \cdot d \vec { r }$ ; confidence 0.787
+
183. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301103.png ; $\Gamma : = \oint \overset{\rightharpoonup} { U } , d \overset{\rightharpoonup }{ r }$ ; confidence 0.787
  
184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014038.png ; $E$ ; confidence 0.787
+
184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014038.png ; $E_r$ ; confidence 0.787
  
 
185. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005065.png ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787
 
185. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005065.png ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787
  
186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in N ^ { Q _ { 0 } }$ ; confidence 0.787
+
186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in \mathbf{N} ^ { Q _ { 0 } }$ ; confidence 0.787
  
187. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200304.png ; $Q _ { x } ^ { G }$ ; confidence 0.787
+
187. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200304.png ; $Q _ { n } ^ { G }$ ; confidence 0.787
  
 
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021045.png ; $t = 1 / ( k _ { b } - f )$ ; confidence 0.787
 
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021045.png ; $t = 1 / ( k _ { b } - f )$ ; confidence 0.787
  
189. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110188.png ; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 }$ ; confidence 0.787
+
189. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110188.png ; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 } .$ ; confidence 0.787
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180156.png ; $13$ ; confidence 0.787
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180156.png ; $L_3$ ; confidence 0.787
  
191. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013020.png ; $\| x \| = \operatorname { dist } ( x , Z )$ ; confidence 0.787
+
191. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013020.png ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} )$ ; confidence 0.787
  
 
192. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003022.png ; $b \Delta$ ; confidence 0.786
 
192. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003022.png ; $b \Delta$ ; confidence 0.786
  
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018073.png ; $E \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | )$ ; confidence 0.786
+
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018073.png ; $\mathsf{E} \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | ),$ ; confidence 0.786
  
194. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016017.png ; $j \geq j 0$ ; confidence 0.786
+
194. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016017.png ; $j \geq j_0$ ; confidence 0.786
  
 
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006090.png ; $A = V \Lambda V ^ { - 1 }$ ; confidence 0.786
 
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006090.png ; $A = V \Lambda V ^ { - 1 }$ ; confidence 0.786
Line 392: Line 392:
 
196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001013.png ; $c _ { \beta } > c _ { \alpha }$ ; confidence 0.786
 
196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001013.png ; $c _ { \beta } > c _ { \alpha }$ ; confidence 0.786
  
197. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201905.png ; $L _ { 2 } ( R _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ ; confidence 0.786
+
197. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201905.png ; $L _ { 2 } ( \mathbf{R} _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ ; confidence 0.786
  
198. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003038.png ; $\Pi ( \alpha ) = 2 \operatorname { arctan } ( e ^ { - \alpha / k } )$ ; confidence 0.786
+
198. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003038.png ; $\Pi ( a ) = 2 \arctan ( e ^ { - a / k } ),$ ; confidence 0.786
  
199. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$ ; confidence 0.786
+
199. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { r(\lambda) } ( \lambda ) > 0$ ; confidence 0.786
  
 
200. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
 
200. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
  
201. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759026.png ; $VC ( A , k )$ ; confidence 0.786
+
201. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759026.png ; $\operatorname{VC} ( A , k )$ ; confidence 0.786
  
 
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040542.png ; $i < m$ ; confidence 0.786
 
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040542.png ; $i < m$ ; confidence 0.786
Line 406: Line 406:
 
203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840154.png ; $T ^ { + }$ ; confidence 0.786
 
203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840154.png ; $T ^ { + }$ ; confidence 0.786
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023051.png ; $A y = \lambda y$ ; confidence 0.786
+
204. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023051.png ; $A v = \lambda v$ ; confidence 0.786
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029074.png ; $Q _ { f } \rightarrow Y _ { f }$ ; confidence 0.786
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029074.png ; $Q _ { \widetilde{f} } \rightarrow Y _ { f }$ ; confidence 0.786
  
206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011040.png ; $- \Delta ^ { 0 }$ ; confidence 0.786
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011040.png ; $- \Delta ^ { \circ }$ ; confidence 0.786
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}$ ; confidence 0.786
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}.$ ; confidence 0.786
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025049.png ; $GF ( q )$ ; confidence 0.786
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025049.png ; $\operatorname{GF} ( q ),$ ; confidence 0.786
  
 
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051076.png ; $v _ { j } \in F ( u _ { j } )$ ; confidence 0.785
 
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051076.png ; $v _ { j } \in F ( u _ { j } )$ ; confidence 0.785
Line 420: Line 420:
 
210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011070.png ; $K \subset L$ ; confidence 0.785
 
210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011070.png ; $K \subset L$ ; confidence 0.785
  
211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030065.png ; $\{ \phi _ { m } ( ; \eta ) \} _ { m = 1 } ^ { \infty } 1$ ; confidence 0.785
+
211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030065.png ; $\{ \phi _ { m } ( . ; \eta ) \} _ { m = 1 } ^ { \infty } $ ; confidence 0.785
  
 
212. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940801.png ; $( X ; A , B , x _ { 0 } )$ ; confidence 0.785
 
212. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940801.png ; $( X ; A , B , x _ { 0 } )$ ; confidence 0.785
  
213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008018.png ; $( 2 )$ ; confidence 0.785
+
213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008018.png ; $\operatorname{ISO}( 2 )$ ; confidence 0.785
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240490.png ; $X _ { 2 }$ ; confidence 0.785
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240490.png ; $\mathbf{X} _ { 2 }$ ; confidence 0.785
  
 
215. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005024.png ; $X ^ { p } - a$ ; confidence 0.785
 
215. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005024.png ; $X ^ { p } - a$ ; confidence 0.785
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { x }$ ; confidence 0.785
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { * }$ ; confidence 0.785
  
 
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023062.png ; $\nabla _ { Z } R = G J G ^ { * }$ ; confidence 0.785
 
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023062.png ; $\nabla _ { Z } R = G J G ^ { * }$ ; confidence 0.785
  
218. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110117.png ; $\frac { 1 } { \left( \begin{array} { c } { N - 1 } \\ { M - 1 } \end{array} \right) }$ ; confidence 0.785
+
218. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110117.png ; $\frac { 1 } { \left( \begin{array} { c } { N - 1 } \\ { M - 1 } \end{array} \right) },$ ; confidence 0.785
  
 
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007056.png ; $k _ { 0 } = \text { const } > 0$ ; confidence 0.785
 
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007056.png ; $k _ { 0 } = \text { const } > 0$ ; confidence 0.785
  
220. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054081.png ; $b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785
+
220. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054081.png ; $a, b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201808.png ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } }$ ; confidence 0.785
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201808.png ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } },$ ; confidence 0.785
  
222. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096095.png ; $SL _ { 2 }$ ; confidence 0.785
+
222. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096095.png ; $\operatorname{SL} _ { 2 }$ ; confidence 0.785
  
 
223. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020017.png ; $[ h _ { i } h _ { j } ] = 0$ ; confidence 0.785
 
223. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020017.png ; $[ h _ { i } h _ { j } ] = 0$ ; confidence 0.785
  
224. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003049.png ; $N ( X ) = 0$ ; confidence 0.785
+
224. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003049.png ; $\mathbf{N} ( X ) = 0$ ; confidence 0.785
  
225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002070.png ; $d x ^ { x }$ ; confidence 0.785
+
225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002070.png ; $d x ^ { n }$ ; confidence 0.785
  
226. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001026.png ; $\int _ { \Omega } f _ { 1 } \circ X _ { t _ { 1 } } \ldots f _ { n } \circ X _ { t _ { n } } d P \geq 0$ ; confidence 0.785
+
226. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001026.png ; $\int _ { \Omega } f _ { 1 } \circ \mathcal{X} _ { t _ { 1 } } \ldots f _ { n } \circ \mathcal{X} _ { t _ { n } } d P \geq 0$ ; confidence 0.785
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027074.png ; $: [ 0 , \infty ) \rightarrow R$ ; confidence 0.784
+
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027074.png ; $b : [ 0 , \infty ) \rightarrow \mathbf R$ ; confidence 0.784
  
 
228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060122.png ; $Z \cup Y$ ; confidence 0.784
 
228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060122.png ; $Z \cup Y$ ; confidence 0.784
Line 458: Line 458:
 
229. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.784
 
229. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.784
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030041.png ; $x _ { y } \rightarrow 0$ ; confidence 0.784
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030041.png ; $x _ { n } \rightarrow 0$ ; confidence 0.784
  
 
231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
 
231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
  
232. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600403.png ; $= a _ { 0 } ( z - r _ { 1 } ) \ldots ( z - r _ { n } ) , \quad a _ { 0 } \neq 0$ ; confidence 0.784
+
232. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600403.png ; $= a _ { 0 } ( z - r _ { 1 } ) \ldots ( z - r _ { n } ) , \quad a _ { 0 } \neq 0,$ ; confidence 0.784
  
 
233. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008082.png ; $\lambda _ { + }$ ; confidence 0.784
 
233. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008082.png ; $\lambda _ { + }$ ; confidence 0.784
  
234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015065.png ; $1 < 0$ ; confidence 0.784
+
234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015065.png ; $I < 0$ ; confidence 0.784
  
 
235. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014038.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$ ; confidence 0.784
 
235. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014038.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$ ; confidence 0.784
Line 472: Line 472:
 
236. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002058.png ; $0 \leq t \leq \lambda$ ; confidence 0.784
 
236. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002058.png ; $0 \leq t \leq \lambda$ ; confidence 0.784
  
237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011018.png ; $P \times \hookrightarrow S$ ; confidence 0.783
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011018.png ; $\mathcal{P} _{*} \hookrightarrow \mathcal{S}$ ; confidence 0.783
  
 
238. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008049.png ; $D _ { y } ( f )$ ; confidence 0.783
 
238. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008049.png ; $D _ { y } ( f )$ ; confidence 0.783
  
239. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014049.png ; $\operatorname { dim } : K _ { 0 } ( Q ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.783
+
239. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014049.png ; $\underline{\operatorname { dim }} : K _ { 0 } ( Q ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }$ ; confidence 0.783
  
 
240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783
 
240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783
Line 484: Line 484:
 
242. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201108.png ; $\xi ( . )$ ; confidence 0.783
 
242. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201108.png ; $\xi ( . )$ ; confidence 0.783
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $\mathbf{M} _ { \mathsf{E} } = \mathbf{Z} _ { 3 } ^ { \prime } \mathbf{Z} _ { 3 }$ ; confidence 0.783
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\Omega$ ; confidence 0.783
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\sigma$ ; confidence 0.783
  
 
245. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
 
245. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
Line 494: Line 494:
 
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783
 
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783
  
248. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d0305504.png ; $R \nmid P$ ; confidence 0.783
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d0305504.png ; $R / P$ ; confidence 0.783
  
249. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023080.png ; $R ^ { - \# } - Z R ^ { - \# } Z ^ { * } = H J H ^ { * }$ ; confidence 0.783
+
249. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023080.png ; $R ^ { - \# } - Z R ^ { - \# } Z ^ { * } = H J H ^ { * }.$ ; confidence 0.783
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023057.png ; $c _ { q } = \frac { ( | q | + n - 1 ) ! } { q _ { 1 } ! \ldots q _ { N } ! } x$ ; confidence 0.783
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023057.png ; $c _ { q } = \frac { ( | q | + n - 1 ) ! } { q _ { 1 } ! \ldots q _ { n } ! } \times$ ; confidence 0.783
  
 
251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230129.png ; $S = R _ { 22 } - R _ { 21 } R _ { 11 } ^ { - 1 } R _ { 12 }$ ; confidence 0.783
 
251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230129.png ; $S = R _ { 22 } - R _ { 21 } R _ { 11 } ^ { - 1 } R _ { 12 }$ ; confidence 0.783
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001093.png ; $H _ { \rho } ( \alpha ; w ) =$ ; confidence 0.783
+
252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001093.png ; $H _ { \rho } ( a ; w ) =$ ; confidence 0.783
  
253. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005012.png ; $g : R \rightarrow R$ ; confidence 0.783
+
253. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005012.png ; $g : \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.783
  
254. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007070.png ; $x = \frac { 1 - \lambda } { \pi } \operatorname { ln } \frac { 1 } { 2 } ( 1 + \operatorname { cos } \frac { \pi y } { \lambda } )$ ; confidence 0.782
+
254. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007070.png ; $x = \frac { 1 - \lambda } { \pi } \operatorname { ln } \frac { 1 } { 2 } \left( 1 + \operatorname { cos } \frac { \pi y } { \lambda } \right).$ ; confidence 0.782
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240180.png ; $= E ( y _ { i j k } )$ ; confidence 0.782
+
255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240180.png ; $= \mathsf{E} ( y _ { i j k } )$ ; confidence 0.782
  
256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180199.png ; $W ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.782
+
256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180199.png ; $W ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.782
  
 
257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
 
257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
Line 516: Line 516:
 
258. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013036.png ; $f _ { j } ( \overline { X } )$ ; confidence 0.782
 
258. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013036.png ; $f _ { j } ( \overline { X } )$ ; confidence 0.782
  
259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090189.png ; $Z _ { p } [ \chi ]$ ; confidence 0.782
+
259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090189.png ; $\mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.782
  
 
260. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005018.png ; $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$ ; confidence 0.782
 
260. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005018.png ; $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$ ; confidence 0.782
Line 522: Line 522:
 
261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130175.png ; $a = 0$ ; confidence 0.782
 
261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130175.png ; $a = 0$ ; confidence 0.782
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270103.png ; $F ( x ) = P ( T _ { 1 } - T _ { 0 } \leq x )$ ; confidence 0.782
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270103.png ; $F ( x ) = \mathsf{P} ( T _ { 1 } - T _ { 0 } \leq x )$ ; confidence 0.782
  
263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026064.png ; $\| U ^ { n } \| _ { \infty } = \operatorname { max } _ { 1 \leq j \leq J } | U _ { j } ^ { n } |$ ; confidence 0.782
+
263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026064.png ; $\| \mathbf{U} ^ { n } \| _ { \infty } = \operatorname { max } _ { 1 \leq j \leq J } | U _ { j } ^ { n } |$ ; confidence 0.782
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( R ; X ) \}$ ; confidence 0.781
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( \mathbf{R} ; X ) \}$ ; confidence 0.781
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040752.png ; $\varphi _ { r } \in Fm _ { P }$ ; confidence 0.781
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040752.png ; $\varphi _ { r } \in \operatorname{Fm} _ { P }$ ; confidence 0.781
  
266. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005034.png ; $L _ { \infty } ( T ) \cap VMO ( T )$ ; confidence 0.781
+
266. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005034.png ; $L _ { \infty } ( T ) \cap \operatorname{VMO} ( T )$ ; confidence 0.781
  
 
267. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620104.png ; $q = n$ ; confidence 0.781
 
267. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620104.png ; $q = n$ ; confidence 0.781
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026018.png ; $u ^ { 0 } ( x ; )$ ; confidence 0.781
+
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026018.png ; $u ^ { 0 } ( x_j )$ ; confidence 0.781
  
 
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005015.png ; $I ( K )$ ; confidence 0.781
 
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005015.png ; $I ( K )$ ; confidence 0.781
Line 540: Line 540:
 
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014082.png ; $E _ { 0 } ( x , a ) = 1$ ; confidence 0.781
 
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014082.png ; $E _ { 0 } ( x , a ) = 1$ ; confidence 0.781
  
271. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019016.png ; $x = - \int _ { 0 } ^ { \infty } e ^ { A ^ { * } t } C e ^ { A t } d t$ ; confidence 0.781
+
271. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019016.png ; $x = - \int _ { 0 } ^ { \infty } e ^ { A ^ { * } t } C e ^ { A t } d t,$ ; confidence 0.781
  
 
272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023013.png ; $f ( C _ { j } )$ ; confidence 0.781
 
272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023013.png ; $f ( C _ { j } )$ ; confidence 0.781
  
273. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170265.png ; $H _ { 0 } ( B ) = Z$ ; confidence 0.781
+
273. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170265.png ; $H _ { 0 } ( B ) = \mathbf{Z}$ ; confidence 0.781
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024010.png ; $T \in R$ ; confidence 0.781
+
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024010.png ; $T \in \mathbf{R}$ ; confidence 0.781
  
 
275. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165040.png ; $j \in J$ ; confidence 0.781
 
275. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165040.png ; $j \in J$ ; confidence 0.781
  
276. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015023.png ; $K$ ; confidence 0.781
+
276. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015023.png ; $\mathcal{K}$ ; confidence 0.781
  
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009016.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) \frac { 1 + k f ( z , t ) } { 1 - \dot { k } f ( z , t ) }$ ; confidence 0.781
+
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009016.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) \frac { 1 + k f ( z , t ) } { 1 - \dot { k } f ( z , t ) },$ ; confidence 0.781
  
278. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008032.png ; $\nu : = \operatorname { min } \{ \operatorname { dim } l , n \}$ ; confidence 0.781
+
278. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008032.png ; $\nu : = \operatorname { min } \{ \operatorname { dim } I , n \}$ ; confidence 0.781
  
279. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040040.png ; $X _ { G } E G \rightarrow B G$ ; confidence 0.781
+
279. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040040.png ; $X _ { G } \times_{E} G \rightarrow B G$ ; confidence 0.781
  
280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007069.png ; $\sigma ( \xi , x ) = ( \alpha \xi + b x ) ^ { k }$ ; confidence 0.781
+
280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007069.png ; $\sigma ( \xi , x ) = ( a \xi + b x ) ^ { k }$ ; confidence 0.781
  
 
281. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740375.png ; $\eta _ { A }$ ; confidence 0.780
 
281. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740375.png ; $\eta _ { A }$ ; confidence 0.780
Line 568: Line 568:
 
284. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047017.png ; $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$ ; confidence 0.780
 
284. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047017.png ; $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$ ; confidence 0.780
  
285. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014018.png ; $P _ { + }$ ; confidence 0.780
+
285. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014018.png ; $\mathcal{P} _ { + }$ ; confidence 0.780
  
 
286. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008033.png ; $K ^ { - 1 }$ ; confidence 0.780
 
286. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008033.png ; $K ^ { - 1 }$ ; confidence 0.780
Line 574: Line 574:
 
287. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011021.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( - , T )$ ; confidence 0.780
 
287. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011021.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( - , T )$ ; confidence 0.780
  
288. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002020.png ; $n = F _ { n _ { 1 } } + \ldots + F _ { n _ { k } }$ ; confidence 0.780
+
288. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002020.png ; $n = F _ { n _ { 1 } } + \ldots + F _ { n _ { k } },$ ; confidence 0.780
  
 
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005020.png ; $0 \leq i \leq i$ ; confidence 0.780
 
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005020.png ; $0 \leq i \leq i$ ; confidence 0.780
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600250.png ; $f$ ; confidence 0.780
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600250.png ; $f_i$ ; confidence 0.780
  
 
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023019.png ; $U = \cap _ { i = 1 } ^ { n } U _ { i }$ ; confidence 0.780
 
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023019.png ; $U = \cap _ { i = 1 } ^ { n } U _ { i }$ ; confidence 0.780
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008032.png ; $t \in R$ ; confidence 0.780
+
292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008032.png ; $t \in \mathbf{R}$ ; confidence 0.780
  
 
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780
 
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780
  
294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200609.png ; $( C ^ { \infty } ( R ^ { m } , R ) , A ) \simeq A ^ { m } = T _ { A } R ^ { m }$ ; confidence 0.780
+
294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200609.png ; $\operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A ) \simeq A ^ { m } = T _ { A } \mathbf{R} ^ { m }.$ ; confidence 0.780
  
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010024.png ; $| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \|$ ; confidence 0.780
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010024.png ; $\| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \| ,$ ; confidence 0.780
  
 
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007019.png ; $a \mapsto a$ ; confidence 0.780
 
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007019.png ; $a \mapsto a$ ; confidence 0.780

Revision as of 22:28, 13 May 2020

List

1. d12003066.png ; $x \in [ 0,1 ] \backslash E$ ; confidence 0.797

2. a130240535.png ; $\operatorname{rank} (\mathbf{X} _ { 2 } ) = p$ ; confidence 0.797

3. g13003040.png ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.797

4. m12023079.png ; $u _ { t } + u u _ { x } = \mu u _ { xx }$ ; confidence 0.797

5. e12015055.png ; $\mathcal{D} _ { j k \text{l} } ^ { i }$ ; confidence 0.797

6. w120110203.png ; $G _ { X }$ ; confidence 0.797

7. t13010038.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( T , - )$ ; confidence 0.797

8. b12015034.png ; $\operatorname { Cov } _ { \mathsf{P} } ( d ^ { * } , d _ { 0 } ) = 0$ ; confidence 0.797

9. a13027053.png ; $x _ { n_j } ^ { \prime } \rightarrow x$ ; confidence 0.796

10. c1200804.png ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796

11. c12003011.png ; $f ( t , . ) : G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.796

12. m130110137.png ; $\frac { D \mathbf{v} } { D t } = \frac { \partial \mathbf{v} } { \partial t } + \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } \mathbf{v} ) \times \mathbf{v}.$ ; confidence 0.796

13. t13013092.png ; $\operatorname{End}_{\mathcal{H}} T $ ; confidence 0.796

14. a12015081.png ; $\operatorname{Ad} ^ { * } : G \rightarrow \operatorname{GL} ( \mathfrak{g} ^ { * } )$ ; confidence 0.796

15. b13027070.png ; $B \otimes \mathcal{K} ( \mathcal{H} )$ ; confidence 0.796

16. m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796

17. m12016014.png ; $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.796

18. a1105909.png ; $n \in \mathbf N$ ; confidence 0.796

19. z13001037.png ; $x ( n ) = \frac { 1 } { 2 \pi i } \oint _ { c } \widetilde{x} ( z ) z ^ { n - 1 } d z$ ; confidence 0.796

20. i05107026.png ; $\alpha _ { N }$ ; confidence 0.796

21. g130030109.png ; $\tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }.$ ; confidence 0.795

22. i12010048.png ; $\phi ^ { 2 } = \operatorname{id}$ ; confidence 0.795

23. g12004050.png ; $\mathcal{C} \ni \xi ^ { 0 }$ ; confidence 0.795

24. r11011035.png ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}.$ ; confidence 0.795

25. s13053070.png ; $2 ^ { r }$ ; confidence 0.795

26. t120060127.png ; $[ 0 , Z + ( \text { const } ) K ]$ ; confidence 0.795

27. s12025051.png ; $[ Q _ { n } ] ^ { - 1 }$ ; confidence 0.795

28. a130070113.png ; $\alpha \in \mathbf{R}$ ; confidence 0.795

29. d12016043.png ; $\pi _ { k } ( T )$ ; confidence 0.795

30. q13005083.png ; $h : \mathbf{T} \rightarrow \mathbf{C}$ ; confidence 0.795

31. n12002035.png ; $\mathsf{P} ( \theta , \mu )$ ; confidence 0.795

32. h12001034.png ; $\mathcal{I}_{ ( v , w )}$ ; confidence 0.795

33. p12013021.png ; $x$ ; confidence 0.795

34. a130240414.png ; $f ( \mathbf{Z} _ { 1 } )$ ; confidence 0.795

35. c120180439.png ; $k = - 1 + n / 2$ ; confidence 0.795

36. b12013023.png ; $\| f \| _ { p , G}$ ; confidence 0.795

37. i13007065.png ; $u ( x , y_{0} , k )$ ; confidence 0.795

38. b120150129.png ; $d ^ { * } : \Omega \rightarrow \mathbf{R}$ ; confidence 0.795

39. w130080217.png ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p,$ ; confidence 0.795

40. q12005093.png ; $H_{\text{new}}$ ; confidence 0.794

41. c12020012.png ; $D ^ { k + 1 } \times D ^ { m - k }$ ; confidence 0.794

42. k055840103.png ; $\mathcal{L} = \{ x _ { + } + K _ { \mathcal{L} } x _ { + } : x _ { + } \in \mathcal{K} _ { + } \}$ ; confidence 0.794

43. b0157109.png ; $q \geq 1$ ; confidence 0.794

44. n06663071.png ; $f ^ { ( s ) }$ ; confidence 0.794

45. a012950147.png ; $\tau_i$ ; confidence 0.794

46. b12021012.png ; $\mathfrak n$ ; confidence 0.794

47. m12007059.png ; $\sigma _ { 1 } = 1.17628 \ldots$ ; confidence 0.794

48. d12003046.png ; $\operatorname{DB} _ { 1 }$ ; confidence 0.794

49. l12004080.png ; $\Delta t / 2$ ; confidence 0.794

50. a12012010.png ; $b _ {ij }$ ; confidence 0.794

51. a13007070.png ; $1 \leq m < n$ ; confidence 0.794

52. m13019035.png ; $\mathcal{R} = \mathcal{L}. \mathcal{L}$ ; confidence 0.794

53. w120090260.png ; $\mathbf{l} = | \Sigma |$ ; confidence 0.794

54. n13006042.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots ,$ ; confidence 0.794

55. b12022099.png ; $f ( t _ { n } , x , \xi ) = M ( u ^ { n } ( x ) , \xi ).$ ; confidence 0.794

56. q13004026.png ; $J _ { f } ( x ) \leq K \text{l} ( f ^ { \prime } ( x ) ) ^ { n },$ ; confidence 0.794

57. y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794

58. w130080164.png ; $\mathcal{Y} ( \gamma ) = \psi ( z _ { 0 } , \overline{z} _ { 0 } ) | _ { \gamma } = P \operatorname { exp } ( \oint _ { \gamma } \mathcal{A} )$ ; confidence 0.794

59. p1201509.png ; $g.x$ ; confidence 0.794

60. s120230134.png ; $X = ( X _ { 1 } , \dots , X _ { r } )$ ; confidence 0.794

61. c12030091.png ; $\dim ( \mathcal{H} ) < \infty$ ; confidence 0.794

62. d12012024.png ; $U F : U \mathcal C \rightarrow U \mathcal C ^ { \prime }$ ; confidence 0.794

63. b015350254.png ; $t = s$ ; confidence 0.794

64. a11032014.png ; $T = 0$ ; confidence 0.794

65. b13003052.png ; $x \in V ^ { \pm }$ ; confidence 0.794

66. w120090406.png ; $d_{ \lambda \mu }$ ; confidence 0.794

67. v120020226.png ; $\Phi x = x - F x$ ; confidence 0.793

68. l05702045.png ; $F = ( F _ { n } )$ ; confidence 0.793

69. a1302809.png ; $| a _ { n } + 1 - b _ { n + 1} | < \frac { 1 } { 2 } | a _ { n } - b _ { n } |.$ ; confidence 0.793

70. f120110130.png ; $\operatorname { Im } \zeta ^ { 2 } = \pm \pi$ ; confidence 0.793

71. a011660132.png ; $\leq$ ; confidence 0.793

72. b12032065.png ; $= F ( s , t ) \left\| \frac { r } { F ( s , t ) } x + z \right\| =$ ; confidence 0.793

73. z130110143.png ; $a \neq 1 / 2$ ; confidence 0.793

74. a130240474.png ; $\mathbf{X} _ { 1 }$ ; confidence 0.793

75. j13004031.png ; $P _ { 4 _ { 1 } } = v ^ { - 2 } - 1 + v ^ { 2 } - z ^ { 2 }$ ; confidence 0.793

76. f12019023.png ; $C _ { S } ( t )$ ; confidence 0.793

77. a011800100.png ; $\operatorname{NP}$ ; confidence 0.793

78. c02197031.png ; $C [ 0,1]$ ; confidence 0.793

79. r130070146.png ; $\int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) = G ( t )$ ; confidence 0.793

80. a12015042.png ; $X \in \mathfrak g $ ; confidence 0.793

81. a130240238.png ; $\operatorname{MS} _ { e } = \operatorname{SS} _ { e } / ( n - r )$ ; confidence 0.793

82. c13007063.png ; $g = 0 \Rightarrow C$ ; confidence 0.793

83. c13016068.png ; $\operatorname{DTIME}[ 2 ^ { O ( s ( n ) ) } ]$ ; confidence 0.793

84. b13004073.png ; $V _ { n } \subset U _ { n }$ ; confidence 0.793

85. a130240310.png ; $\eta_{ij}$ ; confidence 0.793

86. b13027053.png ; $K _ { 1 } ( X )$ ; confidence 0.793

87. i130090108.png ; $\lambda _ { p } ( K / k ) \geq 0$ ; confidence 0.793

88. l06003074.png ; $\Pi ( a ) = 2 \operatorname { arc} \operatorname{tan } e ^ { - a }$ ; confidence 0.793

89. w13009067.png ; $\Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ).$ ; confidence 0.793

90. s13034039.png ; $W _ { k } ( M ) = R \mathcal{K} / C _ { k + 1 }.$ ; confidence 0.793

91. k055840375.png ; $\mathcal{K} = L _ { 2 , r }$ ; confidence 0.792

92. c13019042.png ; $( N / L , [ L ] )$ ; confidence 0.792

93. e120190118.png ; $g ( a , b )$ ; confidence 0.792

94. o13005050.png ; $\varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x$ ; confidence 0.792

95. p13010020.png ; $z \in \widehat { K } \leftrightarrow m _ { z },$ ; confidence 0.792

96. v120020102.png ; $y _ { 0 } \in G ( y _ { 0 } )$ ; confidence 0.792

97. b130120100.png ; $B _ { 1,1 } ^ { 1 } \subset \mathcal{A} ^ { * } \subset B _ { 2,1 } ^ { 1 / 2 }$ ; confidence 0.792

98. c12014016.png ; $\operatorname{CS}$ ; confidence 0.792

99. c02583072.png ; $i A _ { 0 }$ ; confidence 0.792

100. b12043066.png ; $S _ { y } = - y,$ ; confidence 0.792

101. a012430138.png ; $Y _ { 1 }$ ; confidence 0.792

102. s13011039.png ; $q < r$ ; confidence 0.792

103. l12010085.png ; $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ ; confidence 0.791

104. h1301306.png ; $\mathbf{k} = ( k _ { 1 } , \dots , k _ { n } )$ ; confidence 0.791

105. q130050110.png ; $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ ; confidence 0.791

106. h13009032.png ; $\langle G , t : t ^ { - 1 } A t = B , \mu \rangle$ ; confidence 0.791

107. r13011021.png ; $\Xi ( t ) : = \xi \left( \frac { 1 } { 2 } + i t \right).$ ; confidence 0.791

108. k1201305.png ; $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ ; confidence 0.791

109. p13013050.png ; $\lambda \in \operatorname{SP} ( n )$ ; confidence 0.791

110. b13020038.png ; $[ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }$ ; confidence 0.791

111. f120230134.png ; $+ \frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma L ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ) +$ ; confidence 0.791

112. b13017042.png ; $\phi ( . , . )$ ; confidence 0.791

113. g13004086.png ; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791

114. h1200207.png ; $\widehat { \phi } ( j ) = \alpha_j$ ; confidence 0.791

115. a13027033.png ; $\{ \phi _ { n } \} \subset X$ ; confidence 0.791

116. d03376067.png ; $D ^ { + }$ ; confidence 0.791

117. i13006088.png ; $g ( t ) : = - \frac { 2 } { \pi } \int _ { 0 } ^ { \infty } \delta ( k ) \operatorname { sin } ( k t ) d k,$ ; confidence 0.791

118. c12018045.png ; $\otimes ^ { 2 } \mathcal{E}$ ; confidence 0.791

119. a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791

120. s13044015.png ; $\pi_{ *} ( D X \wedge Y ) \simeq [ X , Y ]_* $ ; confidence 0.791

121. g045090227.png ; $w \in \Omega$ ; confidence 0.791

122. c13015010.png ; $\varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi \left( \frac { y - x } { \varepsilon } \right).$ ; confidence 0.791

123. b120420166.png ; $\Psi _ { ( V , \lambda ) , ( W , \mu ) } = \lambda _ { W }$ ; confidence 0.791

124. d03250046.png ; $\leq \epsilon$ ; confidence 0.790

125. s13045030.png ; $F _ { X } ( X )$ ; confidence 0.790

126. c0232705.png ; $A \subseteq \overline{A}$ ; confidence 0.790

127. c120180145.png ; $\theta \otimes \theta \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.790

128. a13031094.png ; $\operatorname{Dist} \mathcal{NP}$ ; confidence 0.790

129. m13003021.png ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790

130. l120100100.png ; $\sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E.$ ; confidence 0.790

131. c130070196.png ; $\mathfrak { R } ( C , P )$ ; confidence 0.790

132. f12009068.png ; $\mu ^ { * } f ( z ) = \mu ( \zeta \mapsto f ( z + \zeta ) ).$ ; confidence 0.790

133. a130240453.png ; $q = 1$ ; confidence 0.790

134. t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790

135. m13018042.png ; $x = x _ { 0 } < x _ { 1 } < \ldots < x _ { i - 1 } < x _ { i } = y$ ; confidence 0.790

136. t1301108.png ; $B = \operatorname { End } _ { A } ( T )$ ; confidence 0.790

137. v12006018.png ; $p B _ { 2 n } \equiv - 1 ( \operatorname { mod } p )$ ; confidence 0.790

138. c120180142.png ; $\tau _ { 2 } g = g$ ; confidence 0.790

139. d03201018.png ; $E _ { n + 1}$ ; confidence 0.790

140. a130240155.png ; $\mathbf{c} ^ { \prime } \beta$ ; confidence 0.790

141. s130510150.png ; $\mathcal{D} = \{ \mathbf{u} \in V : \sigma ( \mathbf{u} ) = \infty ( K ) , 0 \notin K \} , \mathcal{N} = \{ \mathbf{u} \in V : 0 < \sigma ( \mathbf{u} ) < \infty \} \bigcup$ ; confidence 0.790

142. g13001039.png ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790

143. a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i } \text{(regional constraint)},$ ; confidence 0.789

144. w120110180.png ; $a_{m - 1}$ ; confidence 0.789

145. w12009020.png ; $\operatorname{End}_{K}( E ^ { \otimes r } )$ ; confidence 0.789

146. b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta}$ ; confidence 0.789

147. f12024070.png ; $\overline { t } _ { 0 } : = \operatorname { inf } _ { t \geq t _ { 0 } } [ t - h ( t ) ] > - \infty.$ ; confidence 0.789

148. s12024053.png ; $\varepsilon_i$ ; confidence 0.789

149. o12006068.png ; $\left\{ \lambda > 0 : \sum _ { | \alpha | = k - 1 } \int _ { \partial \Omega \times \partial \Omega } \Phi \left( \frac { \Delta_{ y - x} F ( x ) } { | y - x | } \right) \eta ( x , y ) \leq 1 \right\},$ ; confidence 0.789

150. i13007050.png ; $\forall \alpha \in S ^ { 2 }$ ; confidence 0.789

151. t13005052.png ; $\sigma _ { \text{T} } ( A , \mathcal X )$ ; confidence 0.789

152. f13001059.png ; $f \in \mathbf Q [ x ]$ ; confidence 0.789

153. l120120115.png ; $\operatorname{p} \in T$ ; confidence 0.789

154. d120020242.png ; $g ( \overline { u } _ { 1 } ) < v _ { M } = \overline { q }$ ; confidence 0.789

155. c12003020.png ; $I \times G$ ; confidence 0.789

156. s130510115.png ; $\operatorname{l} = \infty ( L )$ ; confidence 0.789

157. o11001041.png ; $x \neq e$ ; confidence 0.789

158. a01182064.png ; $\phi _ { i }$ ; confidence 0.789

159. t12013050.png ; $\tau _ { n } ( x - [ z ] , y )$ ; confidence 0.788

160. b12024028.png ; $\operatorname{det} f$ ; confidence 0.788

161. a1202505.png ; $\operatorname{PG} ( 2 , q )$ ; confidence 0.788

162. n0666305.png ; $r = ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.788

163. m130230134.png ; $( ( K _ { X ^ { \prime } } + B ^ { \prime } ) . C ) \geq 0$ ; confidence 0.788

164. l057000209.png ; $[[M]]_{\rho} = [ [ N ] ] _ { \rho }$ ; confidence 0.788

165. d11018013.png ; $\times \operatorname { exp } \left\{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( u ) } \frac { e ^ { s } - 1 } { s } d s \right\} \quad ( u > 1 ),$ ; confidence 0.788

166. h12002084.png ; $s _ { j } ( T )$ ; confidence 0.788

167. f13005045.png ; $P \subset M ^ { n }$ ; confidence 0.788

168. r08232028.png ; $S _ { n } ( x _ { 0 } , \rho )$ ; confidence 0.788

169. m12025038.png ; $g : K \rightarrow U ^ { \prime \prime }$ ; confidence 0.788

170. w13008053.png ; $\frac { 1 } { 2 L } \int _ { - L } ^ { L } \phi d t _ { i } = \langle \phi \rangle = \left( \frac { 1 } { 2 \pi } \right) ^ { 2 g } \int \ldots \int \phi d ^ { 2 g } \theta .$ ; confidence 0.788

171. s120340103.png ; $( x , u \sharp v )$ ; confidence 0.788

172. b12042041.png ; $\Psi$ ; confidence 0.788

173. j120020214.png ; $| u | \leq \alpha$ ; confidence 0.788

174. w12003036.png ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787

175. a13027018.png ; $T _ { x } = f , \quad x \in X , f \in Y.$ ; confidence 0.787

176. e12019084.png ; $r \neq s$ ; confidence 0.787

177. t12014074.png ; $\operatorname { dist } _ { L } \infty ( \overline { u } , H ^ { \infty } ) < 1$ ; confidence 0.787

178. b1108205.png ; $T _ { j }$ ; confidence 0.787

179. b12036035.png ; $a , b , c , d$ ; confidence 0.787

180. s120040116.png ; $\sum _ { \lambda } s _ { \lambda } ( \mathbf x ) s _ { \lambda ^ { \prime } } ( \mathbf y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } ).$ ; confidence 0.787

181. h13006049.png ; $D \alpha D$ ; confidence 0.787

182. a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787

183. v1301103.png ; $\Gamma : = \oint \overset{\rightharpoonup} { U } , d \overset{\rightharpoonup }{ r }$ ; confidence 0.787

184. p12014038.png ; $E_r$ ; confidence 0.787

185. o13005065.png ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787

186. t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in \mathbf{N} ^ { Q _ { 0 } }$ ; confidence 0.787

187. g1200304.png ; $Q _ { n } ^ { G }$ ; confidence 0.787

188. b13021045.png ; $t = 1 / ( k _ { b } - f )$ ; confidence 0.787

189. w120110188.png ; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 } .$ ; confidence 0.787

190. a130180156.png ; $L_3$ ; confidence 0.787

191. p12013020.png ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} )$ ; confidence 0.787

192. d12003022.png ; $b \Delta$ ; confidence 0.786

193. w12018073.png ; $\mathsf{E} \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | ),$ ; confidence 0.786

194. r13016017.png ; $j \geq j_0$ ; confidence 0.786

195. b13006090.png ; $A = V \Lambda V ^ { - 1 }$ ; confidence 0.786

196. c13001013.png ; $c _ { \beta } > c _ { \alpha }$ ; confidence 0.786

197. m1201905.png ; $L _ { 2 } ( \mathbf{R} _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ ; confidence 0.786

198. l06003038.png ; $\Pi ( a ) = 2 \arctan ( e ^ { - a / k } ),$ ; confidence 0.786

199. p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { r(\lambda) } ( \lambda ) > 0$ ; confidence 0.786

200. y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786

201. w09759026.png ; $\operatorname{VC} ( A , k )$ ; confidence 0.786

202. a130040542.png ; $i < m$ ; confidence 0.786

203. k055840154.png ; $T ^ { + }$ ; confidence 0.786

204. d11023051.png ; $A v = \lambda v$ ; confidence 0.786

205. a13029074.png ; $Q _ { \widetilde{f} } \rightarrow Y _ { f }$ ; confidence 0.786

206. f12011040.png ; $- \Delta ^ { \circ }$ ; confidence 0.786

207. a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}.$ ; confidence 0.786

208. a12025049.png ; $\operatorname{GF} ( q ),$ ; confidence 0.786

209. s13051076.png ; $v _ { j } \in F ( u _ { j } )$ ; confidence 0.785

210. d11011070.png ; $K \subset L$ ; confidence 0.785

211. b12030065.png ; $\{ \phi _ { m } ( . ; \eta ) \} _ { m = 1 } ^ { \infty } $ ; confidence 0.785

212. t0940801.png ; $( X ; A , B , x _ { 0 } )$ ; confidence 0.785

213. m13008018.png ; $\operatorname{ISO}( 2 )$ ; confidence 0.785

214. a130240490.png ; $\mathbf{X} _ { 2 }$ ; confidence 0.785

215. f12005024.png ; $X ^ { p } - a$ ; confidence 0.785

216. b01539032.png ; $d ^ { * }$ ; confidence 0.785

217. d12023062.png ; $\nabla _ { Z } R = G J G ^ { * }$ ; confidence 0.785

218. z130110117.png ; $\frac { 1 } { \left( \begin{array} { c } { N - 1 } \\ { M - 1 } \end{array} \right) },$ ; confidence 0.785

219. i13007056.png ; $k _ { 0 } = \text { const } > 0$ ; confidence 0.785

220. s13054081.png ; $a, b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785

221. a1201808.png ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } },$ ; confidence 0.785

222. b11096095.png ; $\operatorname{SL} _ { 2 }$ ; confidence 0.785

223. b13020017.png ; $[ h _ { i } h _ { j } ] = 0$ ; confidence 0.785

224. o13003049.png ; $\mathbf{N} ( X ) = 0$ ; confidence 0.785

225. f12002070.png ; $d x ^ { n }$ ; confidence 0.785

226. q12001026.png ; $\int _ { \Omega } f _ { 1 } \circ \mathcal{X} _ { t _ { 1 } } \ldots f _ { n } \circ \mathcal{X} _ { t _ { n } } d P \geq 0$ ; confidence 0.785

227. b12027074.png ; $b : [ 0 , \infty ) \rightarrow \mathbf R$ ; confidence 0.784

228. d130060122.png ; $Z \cup Y$ ; confidence 0.784

229. w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.784

230. a13030041.png ; $x _ { n } \rightarrow 0$ ; confidence 0.784

231. d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784

232. l0600403.png ; $= a _ { 0 } ( z - r _ { 1 } ) \ldots ( z - r _ { n } ) , \quad a _ { 0 } \neq 0,$ ; confidence 0.784

233. i12008082.png ; $\lambda _ { + }$ ; confidence 0.784

234. e12015065.png ; $I < 0$ ; confidence 0.784

235. s13014038.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$ ; confidence 0.784

236. j13002058.png ; $0 \leq t \leq \lambda$ ; confidence 0.784

237. f12011018.png ; $\mathcal{P} _{*} \hookrightarrow \mathcal{S}$ ; confidence 0.783

238. k12008049.png ; $D _ { y } ( f )$ ; confidence 0.783

239. t13014049.png ; $\underline{\operatorname { dim }} : K _ { 0 } ( Q ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }$ ; confidence 0.783

240. a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783

241. e120190112.png ; $S ( m , \rho )$ ; confidence 0.783

242. n1201108.png ; $\xi ( . )$ ; confidence 0.783

243. a130240367.png ; $\mathbf{M} _ { \mathsf{E} } = \mathbf{Z} _ { 3 } ^ { \prime } \mathbf{Z} _ { 3 }$ ; confidence 0.783

244. a120310159.png ; $\sigma$ ; confidence 0.783

245. v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783

246. s1301409.png ; $Q _ { ( s , r ) } = - Q _ { ( r , s ) }$ ; confidence 0.783

247. a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783

248. d0305504.png ; $R / P$ ; confidence 0.783

249. d12023080.png ; $R ^ { - \# } - Z R ^ { - \# } Z ^ { * } = H J H ^ { * }.$ ; confidence 0.783

250. a12023057.png ; $c _ { q } = \frac { ( | q | + n - 1 ) ! } { q _ { 1 } ! \ldots q _ { n } ! } \times$ ; confidence 0.783

251. d120230129.png ; $S = R _ { 22 } - R _ { 21 } R _ { 11 } ^ { - 1 } R _ { 12 }$ ; confidence 0.783

252. c12001093.png ; $H _ { \rho } ( a ; w ) =$ ; confidence 0.783

253. d12005012.png ; $g : \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.783

254. v13007070.png ; $x = \frac { 1 - \lambda } { \pi } \operatorname { ln } \frac { 1 } { 2 } \left( 1 + \operatorname { cos } \frac { \pi y } { \lambda } \right).$ ; confidence 0.782

255. a130240180.png ; $= \mathsf{E} ( y _ { i j k } )$ ; confidence 0.782

256. c120180199.png ; $W ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.782

257. t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782

258. l12013036.png ; $f _ { j } ( \overline { X } )$ ; confidence 0.782

259. i130090189.png ; $\mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.782

260. t13005018.png ; $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$ ; confidence 0.782

261. b110130175.png ; $a = 0$ ; confidence 0.782

262. b120270103.png ; $F ( x ) = \mathsf{P} ( T _ { 1 } - T _ { 0 } \leq x )$ ; confidence 0.782

263. c12026064.png ; $\| \mathbf{U} ^ { n } \| _ { \infty } = \operatorname { max } _ { 1 \leq j \leq J } | U _ { j } ^ { n } |$ ; confidence 0.782

264. a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( \mathbf{R} ; X ) \}$ ; confidence 0.781

265. a130040752.png ; $\varphi _ { r } \in \operatorname{Fm} _ { P }$ ; confidence 0.781

266. v11005034.png ; $L _ { \infty } ( T ) \cap \operatorname{VMO} ( T )$ ; confidence 0.781

267. c021620104.png ; $q = n$ ; confidence 0.781

268. c12026018.png ; $u ^ { 0 } ( x_j )$ ; confidence 0.781

269. w13005015.png ; $I ( K )$ ; confidence 0.781

270. d12014082.png ; $E _ { 0 } ( x , a ) = 1$ ; confidence 0.781

271. l12019016.png ; $x = - \int _ { 0 } ^ { \infty } e ^ { A ^ { * } t } C e ^ { A t } d t,$ ; confidence 0.781

272. m13023013.png ; $f ( C _ { j } )$ ; confidence 0.781

273. l120170265.png ; $H _ { 0 } ( B ) = \mathbf{Z}$ ; confidence 0.781

274. f12024010.png ; $T \in \mathbf{R}$ ; confidence 0.781

275. a01165040.png ; $j \in J$ ; confidence 0.781

276. p12015023.png ; $\mathcal{K}$ ; confidence 0.781

277. b12009016.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) \frac { 1 + k f ( z , t ) } { 1 - \dot { k } f ( z , t ) },$ ; confidence 0.781

278. l13008032.png ; $\nu : = \operatorname { min } \{ \operatorname { dim } I , n \}$ ; confidence 0.781

279. s13040040.png ; $X _ { G } \times_{E} G \rightarrow B G$ ; confidence 0.781

280. w12007069.png ; $\sigma ( \xi , x ) = ( a \xi + b x ) ^ { k }$ ; confidence 0.781

281. c020740375.png ; $\eta _ { A }$ ; confidence 0.780

282. c130070129.png ; $k [ X , Y ]$ ; confidence 0.780

283. m13022019.png ; $o ( g ) \operatorname { gcd } ( 24 , o ( g ) )$ ; confidence 0.780

284. s13047017.png ; $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$ ; confidence 0.780

285. t12014018.png ; $\mathcal{P} _ { + }$ ; confidence 0.780

286. r13008033.png ; $K ^ { - 1 }$ ; confidence 0.780

287. t13011021.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( - , T )$ ; confidence 0.780

288. z12002020.png ; $n = F _ { n _ { 1 } } + \ldots + F _ { n _ { k } },$ ; confidence 0.780

289. t12005020.png ; $0 \leq i \leq i$ ; confidence 0.780

290. a011600250.png ; $f_i$ ; confidence 0.780

291. a13023019.png ; $U = \cap _ { i = 1 } ^ { n } U _ { i }$ ; confidence 0.780

292. a12008032.png ; $t \in \mathbf{R}$ ; confidence 0.780

293. a130240147.png ; $\mu$ ; confidence 0.780

294. w1200609.png ; $\operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A ) \simeq A ^ { m } = T _ { A } \mathbf{R} ^ { m }.$ ; confidence 0.780

295. a12010024.png ; $\| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \| ,$ ; confidence 0.780

296. b13007019.png ; $a \mapsto a$ ; confidence 0.780

297. w120090401.png ; $d _ { \lambda \lambda } = 1$ ; confidence 0.780

298. d11008070.png ; $d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) = \delta ( w _ { i } | v )$ ; confidence 0.780

299. f13009016.png ; $x _ { j } = 2 i \operatorname { cos } ( j \pi / n )$ ; confidence 0.780

300. b12017043.png ; $F _ { \alpha } ^ { p , q }$ ; confidence 0.780

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/41. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/41&oldid=44529