Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/66"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 66 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 66 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110054.png ; $A _ { 1 }$ ; confidence 0.977
+
1. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140134.png ; $\operatorname { dist } _ { \lambda } ( \phi , \psi ) = \operatorname { limsup } _ { S \rightarrow \lambda } | \phi ( \zeta ) - \psi ( \zeta ) |$ ; confidence 0.354
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026081.png ; $( R , m )$ ; confidence 0.999
+
2. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021059.png ; $GF ( q ) ^ { \gamma }$ ; confidence 0.354
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084010.png ; $A ^ { x }$ ; confidence 0.580
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a0104606.png ; $a \in D$ ; confidence 0.354
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026094.png ; $( R , a )$ ; confidence 0.988
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026098.png ; $( A , m )$ ; confidence 0.999
+
5. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008016.png ; $V _ { X } = 0$ ; confidence 0.354
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026075.png ; $y _ { i }$ ; confidence 0.512
+
6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180279.png ; $\Phi \in \otimes ^ { \Psi } E$ ; confidence 0.354
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260123.png ; $y _ { i }$ ; confidence 0.337
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a0120608.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { m } )$ ; confidence 0.354
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026017.png ; $c \in N$ ; confidence 0.421
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023029.png ; $1 = 1,2 , \ldots$ ; confidence 0.354
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026047.png ; $m ^ { c }$ ; confidence 0.914
+
9. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205104.png ; $f ( x ^ { * } ) \leq f ( x ) \text { for all xnear } x ^ { * }$ ; confidence 0.354
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270106.png ; $[ K : Q ]$ ; confidence 0.771
+
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b120320108.png ; $\sigma ( \Gamma )$ ; confidence 0.354
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027059.png ; $( N / K )$ ; confidence 0.749
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020043.png ; $\mathfrak { p } _ { i } ( t ) = q _ { i } ( t ) \prod _ { m = 1 , m \neq i } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.353
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270129.png ; $s = 1 / 2$ ; confidence 0.992
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017050.png ; $W _ { 0 } ^ { Y }$ ; confidence 0.353
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270114.png ; $O _ { N }$ ; confidence 0.534
+
13. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280150.png ; $z \in C ^ { x } \backslash \overline { D } _ { m }$ ; confidence 0.353
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027065.png ; $n _ { P }$ ; confidence 0.221
+
14. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020047.png ; $\sigma \in S _ { y }$ ; confidence 0.353
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280169.png ; $t \in C$ ; confidence 0.366
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002063.png ; $JB ^ { * }$ ; confidence 0.353
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028089.png ; $y _ { x }$ ; confidence 0.405
+
16. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004012.png ; $I _ { i } = [ x _ { i - 1 } / 2 , x _ { i + 1 / 2 } ]$ ; confidence 0.353
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280142.png ; $S _ { E }$ ; confidence 0.566
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013031.png ; $( X _ { x } - 1 , \theta _ { x } - 1 , \ldots )$ ; confidence 0.353
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028074.png ; $x \in X$ ; confidence 0.682
+
18. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011051.png ; $H * ( \overline { M } ) = H * ( F )$ ; confidence 0.353
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028016.png ; $V _ { z }$ ; confidence 0.242
+
19. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004077.png ; $\hat { f } _ { i } ^ { + } = f ( \hat { u } _ { i } ^ { + } )$ ; confidence 0.353
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091014.png ; $C _ { 1 }$ ; confidence 0.829
+
20. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007049.png ; $00 > 0$ ; confidence 0.353
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028014.png ; $z \in T$ ; confidence 0.587
+
21. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v1300602.png ; $C [ y _ { 1 } / 2 , y _ { 3 } / 2 , \dots ]$ ; confidence 0.353
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029041.png ; $Y _ { 0 }$ ; confidence 0.549
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s1301104.png ; $H ^ { * } ( F _ { n } , Z ) \simeq Z [ x _ { 1 } , \dots , x _ { n } ] / Z ^ { + } [ x _ { 1 } , \dots , x _ { n } ] ^ { S _ { n } }$ ; confidence 0.353
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029053.png ; $x ^ { 7 }$ ; confidence 0.980
+
23. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300605.png ; $a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1$ ; confidence 0.353
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030027.png ; $R ^ { + }$ ; confidence 0.989
+
24. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170124.png ; $K ^ { 2 } \times I \searrow L ^ { 2 }$ ; confidence 0.353
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a1105909.png ; $n \in N$ ; confidence 0.796
+
25. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019036.png ; $N + I$ ; confidence 0.353
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030038.png ; $y \in F$ ; confidence 0.415
+
26. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015032.png ; $x ^ { r }$ ; confidence 0.352
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031049.png ; $Q _ { 1 }$ ; confidence 0.689
+
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200190.png ; $\kappa \leq | \operatorname { arc } z _ { j } | < \pi$ ; confidence 0.352
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037018.png ; $X _ { 1 }$ ; confidence 0.967
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037017.png ; $X _ { 2 }$ ; confidence 0.814
+
29. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011047.png ; $\xi _ { z } * : R ^ { n } \rightarrow [ 0,1 ]$ ; confidence 0.352
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310115.png ; $( T , V )$ ; confidence 0.994
+
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210103.png ; $= [ \sum _ { l = 0 } ^ { \infty } \sum _ { n = 0 } ^ { N } a _ { l } ^ { n } z ^ { n + i } ( \frac { \partial } { \partial z } ) ^ { n } ] [ \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { \lambda + k } ] =$ ; confidence 0.352
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032033.png ; $H _ { 1 }$ ; confidence 0.570
+
31. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013016.png ; $Q _ { 2 } n + 1$ ; confidence 0.352
  
32. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501025.png ; $M ^ { x }$ ; confidence 0.674
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040288.png ; $CoA$ ; confidence 0.351
  
33. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b0150108.png ; $B _ { y }$ ; confidence 0.124
+
33. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520212.png ; $G = GL _ { m } ( K ) \times GL _ { n } ( K )$ ; confidence 0.351
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084016.png ; $A ^ { x }$ ; confidence 0.416
+
34. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009090.png ; $( \iota ^ { - 1 } g )$ ; confidence 0.351
  
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010045.png ; $L _ { Y }$ ; confidence 0.202
+
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005092.png ; $\left\{ \begin{array} { l } { j _ { 1 } \geq \ldots \geq j _ { s } } \\ { i _ { s } \geq j _ { s } \geq 0 \quad \forall s , 1 \leq s \leq r } \\ { j _ { 1 } > 0 } \end{array} \right.$ ; confidence 0.351
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010019.png ; $\nu > 2$ ; confidence 0.743
+
36. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014025.png ; $\operatorname { lim } _ { n \rightarrow \infty } \{ \operatorname { inf } _ { C } \| R ^ { n } - q \| ^ { 1 / n } \} = 0$ ; confidence 0.351
  
37. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201005.png ; $\nu > 1$ ; confidence 0.815
+
37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005059.png ; $f : R ^ { \mathfrak { W } } \rightarrow R ^ { k }$ ; confidence 0.351
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010073.png ; $w \in W$ ; confidence 0.964
+
38. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030110/d03011027.png ; $i ^ { + }$ ; confidence 0.351
  
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021069.png ; $M \in O$ ; confidence 0.834
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180183.png ; $A ^ { 2 } E \subset \otimes ^ { 2 } E$ ; confidence 0.351
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021089.png ; $b ^ { x }$ ; confidence 0.465
+
40. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005020.png ; $\mu \overline { x } ^ { 1 } B _ { j }$ ; confidence 0.351
  
41. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066044.png ; $H ^ { 1 }$ ; confidence 0.906
+
41. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023038.png ; $T _ { i j }$ ; confidence 0.351
  
42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066091.png ; $H ^ { p }$ ; confidence 0.994
+
42. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501039.png ; $R ^ { n + r }$ ; confidence 0.351
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002043.png ; $b ( , . )$ ; confidence 0.120
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110330/b11033014.png ; $\omega _ { i }$ ; confidence 0.351
  
44. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002025.png ; $f \in V$ ; confidence 0.996
+
44. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003023.png ; $S q ^ { n } x _ { n } = x _ { n } ^ { 2 }$ ; confidence 0.350
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212064.png ; $u \in U$ ; confidence 0.893
+
45. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c1301107.png ; $f ( y ) - f ( x ) + \sigma \| y - x \| ^ { 2 } \geq \{ \zeta , y - x \}$ ; confidence 0.350
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110600/a1106004.png ; $F _ { n }$ ; confidence 0.349
+
46. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105053.png ; $( E ) < \delta \Rightarrow \operatorname { mes } ( f ( E ) ) < \epsilon$ ; confidence 0.350
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241090.png ; $V _ { i }$ ; confidence 0.684
+
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016058.png ; $R ^ { p } 1 ^ { N } 1$ ; confidence 0.350
  
48. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001079.png ; $V ^ { * }$ ; confidence 0.955
+
48. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020111.png ; $P [ X ^ { * } > \lambda ] \leq C e ^ { - \lambda / e }$ ; confidence 0.350
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010123.png ; $V _ { n }$ ; confidence 0.938
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020082.png ; $j$ ; confidence 0.350
  
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001053.png ; $V _ { j }$ ; confidence 0.987
+
50. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049036.png ; $\sum _ { k = 0 } ^ { n ( P ) } \frac { | F \cap N _ { k } | } { | N _ { k } | } \leq 1$ ; confidence 0.350
  
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b1200304.png ; $a , b > 0$ ; confidence 0.766
+
51. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019030.png ; $x = \operatorname { col } ( x _ { 1 } \ldots x _ { x } )$ ; confidence 0.350
  
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003032.png ; $12.52$ ; confidence 0.126
+
52. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003060.png ; $A ( \Omega ) = B / I 0 , \operatorname { loc }$ ; confidence 0.350
  
53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003011.png ; $A , B > 0$ ; confidence 1.000
+
53. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002072.png ; $q = \frac { n 1 - n 2 } { n 1 + n 2 }$ ; confidence 0.350
  
54. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002041.png ; $w ^ { * }$ ; confidence 0.206
+
54. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032600/d032600120.png ; $| I$ ; confidence 0.350
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002057.png ; $U _ { y }$ ; confidence 0.166
+
55. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566023.png ; $T I$ ; confidence 0.350
  
56. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002060.png ; $y \in J$ ; confidence 0.427
+
56. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006063.png ; $m _ { i - 1 } = a _ { i - 1 } m _ { i } + m _ { i + 1 } , i = 1,2 ,$ ; confidence 0.350
  
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003064.png ; $H ^ { * }$ ; confidence 0.681
+
57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200218.png ; $\operatorname { min } _ { r = m + 1 , \ldots , m + K } | G _ { 1 } ( r ) | \geq \frac { 1 } { P _ { m , K } } | \sum _ { j = 1 } ^ { n } P _ { j } ( 0 ) |$ ; confidence 0.350
  
58. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003020.png ; $( J , J )$ ; confidence 0.989
+
58. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004025.png ; $\sum _ { n = 0 } ^ { \infty } \{ \sum _ { m = 1 } ^ { \infty } [ \sum _ { k = m 2 ^ { n } } ^ { ( m + 1 ) 2 ^ { n } - 1 } | \Delta d _ { k } | ] ^ { 2 } \} ^ { 1 / 2 } < \infty$ ; confidence 0.350
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012960/a01296022.png ; $U _ { n }$ ; confidence 0.468
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032067.png ; $\Pi ( M ) _ { \circlearrowleft } = M _ { I }$ ; confidence 0.349
  
60. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b130040128.png ; $BM ( X )$ ; confidence 0.888
+
60. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200708.png ; $u \in E$ ; confidence 0.349
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011720/a01172010.png ; $X _ { 0 }$ ; confidence 0.798
+
61. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k1300703.png ; $u = h _ { x }$ ; confidence 0.349
  
62. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004057.png ; $D _ { S }$ ; confidence 0.918
+
62. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005039.png ; $N _ { Aut } \Gamma ( G ) = G . \operatorname { Aut } ( G , S )$ ; confidence 0.349
  
63. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040199.png ; $I _ { Y }$ ; confidence 0.131
+
63. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t1200501.png ; $f : V ^ { N } \rightarrow W ^ { p }$ ; confidence 0.349
  
64. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b1200407.png ; $u \in X$ ; confidence 0.906
+
64. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019064.png ; $\Omega \geq 2$ ; confidence 0.349
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004083.png ; $g \in X$ ; confidence 0.480
+
65. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180404.png ; $A ( \mathfrak { g } ) = 0 \in S ^ { 2 } E$ ; confidence 0.349
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970236.png ; $f \in X$ ; confidence 0.862
+
66. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008057.png ; $f ( z , z 0 ) = \frac { 1 } { K _ { D } ( z 0 , z _ { 0 } ) } \int _ { z _ { 0 } } ^ { z } K _ { D } ( t , z _ { 0 } ) d t$ ; confidence 0.349
  
67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040115.png ; $X ^ { * }$ ; confidence 0.699
+
67. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010022.png ; $( C ) \int _ { X } f d m = \sum _ { i = 1 } ^ { n } ( a _ { i } - a _ { i - 1 } ) m ( B _ { i } )$ ; confidence 0.349
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040201.png ; $L _ { p }$ ; confidence 0.879
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110600/a1106004.png ; $F _ { n }$ ; confidence 0.349
  
69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004090.png ; $f ^ { * }$ ; confidence 0.941
+
69. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002015.png ; $w _ { i } ^ { 1 } = \ldots = w _ { i } ^ { q }$ ; confidence 0.349
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162012.png ; $L _ { p }$ ; confidence 0.903
+
70. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200148.png ; $\dot { k } \in [ m + 1 , m + n ]$ ; confidence 0.349
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040162.png ; $1 < p < 2$ ; confidence 1.000
+
71. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001026.png ; $i 0$ ; confidence 0.349
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040179.png ; $( r , 1 )$ ; confidence 0.992
+
72. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013024.png ; $U _ { 1 }$ ; confidence 0.348
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005011.png ; $z \in E$ ; confidence 0.732
+
73. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024016.png ; $b \in U ( \varepsilon )$ ; confidence 0.348
  
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005072.png ; $M _ { 0 }$ ; confidence 0.988
+
74. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507046.png ; $\omega = \sum g _ { \alpha \beta } d z ^ { \alpha } \wedge d z \square ^ { \beta }$ ; confidence 0.348
  
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006096.png ; $E = B - A$ ; confidence 0.999
+
75. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002032.png ; $0 \neq I _ { \delta } \lessdot R$ ; confidence 0.348
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006069.png ; $V ^ { H }$ ; confidence 0.655
+
76. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002048.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma , \ldots , \alpha _ { q } ) , \ldots ,$ ; confidence 0.348
  
77. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007037.png ; $i , j > 0$ ; confidence 0.996
+
77. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150171.png ; $\| T \| < \mu ( A )$ ; confidence 0.348
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007078.png ; $m | = | n$ ; confidence 0.862
+
78. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025021.png ; $f ( x , u ] , \ldots , u _ { x } )$ ; confidence 0.348
  
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009053.png ; $w ( z ) =$ ; confidence 0.999
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020046.png ; $\hat { r }$ ; confidence 0.348
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009056.png ; $f ( z ) =$ ; confidence 1.000
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a110380105.png ; $x _ { 1 } , \ldots , x _ { x }$ ; confidence 0.348
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009027.png ; $| f | < 1$ ; confidence 1.000
+
81. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301108.png ; $H = c \frac { \hbar } { i } \vec { \alpha } . \vec { \nabla } + \vec { \beta } m _ { 0 } c ^ { 2 }$ ; confidence 0.348
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220134.png ; $m < i / 2$ ; confidence 0.997
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329042.png ; $n _ { 1 } , \ldots , n _ { k }$ ; confidence 0.348
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022082.png ; $O _ { X }$ ; confidence 0.773
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021011.png ; $( a * b ) * ( c * d ) = ( a * c ) * ( b * d )$ ; confidence 0.348
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220128.png ; $m = i / 2$ ; confidence 0.996
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016016.png ; $x ^ { 2 }$ ; confidence 0.348
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220196.png ; $X _ { Z }$ ; confidence 0.587
+
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026043.png ; $\| U ^ { x } - u ^ { n } \| \leq \| U ^ { 0 } - u ^ { 0 } \| + O ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.348
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220159.png ; $P _ { D }$ ; confidence 0.078
+
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026048.png ; $F : \overline { U } \rightarrow R ^ { n }$ ; confidence 0.348
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220233.png ; $H _ { H }$ ; confidence 0.903
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014024.png ; $S \in F _ { q }$ ; confidence 0.348
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220209.png ; $i = m = 1$ ; confidence 0.971
+
88. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r1300406.png ; $t = 0$ ; confidence 0.347
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220223.png ; $M _ { Q }$ ; confidence 0.768
+
89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031010.png ; $e ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ | I _ { d } ( f ) - Q _ { n } ( f ) | : f \in F _ { d } \}$ ; confidence 0.347
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022050.png ; $i \in N$ ; confidence 0.395
+
90. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302006.png ; $H _ { f } = P ( d f ) \in X ( M , P )$ ; confidence 0.347
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220226.png ; $M _ { k }$ ; confidence 0.997
+
91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230127.png ; $R = \left( \begin{array} { l l } { R _ { 11 } } & { R _ { 12 } } \\ { R _ { 21 } } & { R _ { 22 } } \end{array} \right) , F = \left( \begin{array} { l l } { F _ { 1 } } & { 0 } \\ { F _ { 2 } } & { F _ { 3 } } \end{array} \right)$ ; confidence 0.347
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022049.png ; $k ^ { j }$ ; confidence 0.856
+
92. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007061.png ; $f \in R ^ { l }$ ; confidence 0.347
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022033.png ; $( M , s )$ ; confidence 0.993
+
93. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230307.png ; $\mathscr { H }$ ; confidence 0.347
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022035.png ; $M ^ { V }$ ; confidence 0.573
+
94. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004036.png ; $\operatorname { sup } _ { 0 < | y | < \pi } | \int _ { - \infty } ^ { \infty } \varphi ( x ) e ^ { - i y x } d x - \sum _ { - \infty } ^ { \infty } \varphi ( k ) e ^ { - i k x } | \leq C \| \varphi \| _ { B V }$ ; confidence 0.347
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460168.png ; $x ^ { 2 }$ ; confidence 0.342
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020036.png ; $M$ ; confidence 0.347
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010077.png ; $T \in T$ ; confidence 0.291
+
96. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002097.png ; $a ^ { 1 } k$ ; confidence 0.347
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010059.png ; $k _ { z }$ ; confidence 0.180
+
97. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520300.png ; $A _ { \alpha } \simeq K _ { \rho _ { 0 } }$ ; confidence 0.347
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010011.png ; $K _ { Z }$ ; confidence 0.423
+
98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026081.png ; $\frac { U _ { h } ^ { n + 1 } - U _ { h } ^ { n } } { k } = \frac { 1 } { 2 } F _ { h } ( t _ { n } , U _ { h } ^ { n } ) + \frac { 1 } { 2 } F _ { h } ( t _ { n } + 1 , U _ { h } ^ { n + 1 } )$ ; confidence 0.347
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010063.png ; $1 ^ { 2 }$ ; confidence 0.363
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029012.png ; $HF _ { * } ^ { inst } ( Y , P _ { Y } )$ ; confidence 0.347
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012012.png ; $v ^ { 1 }$ ; confidence 0.251
+
100. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021032.png ; $\mathfrak { c } _ { 0 } \equiv 1$ ; confidence 0.347
  
101. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013058.png ; $A ^ { p }$ ; confidence 0.996
+
101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210147.png ; $\alpha _ { x } / \tau _ { x } = O ( 1 )$ ; confidence 0.347
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000144.png ; $L ^ { p }$ ; confidence 0.457
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023077.png ; $R ^ { - \# } = T R ^ { - 1 } I$ ; confidence 0.347
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015052.png ; $j = 1,2$ ; confidence 0.727
+
103. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009047.png ; $E _ { 1 } ( k ) = \operatorname { rank } _ { Z p } E _ { 1 } ( k )$ ; confidence 0.346
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150105.png ; $p = 1 / 2$ ; confidence 0.999
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052034.png ; $B _ { c }$ ; confidence 0.346
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150107.png ; $P _ { y }$ ; confidence 0.632
+
105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004041.png ; $X ^ { * }$ ; confidence 0.346
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015016.png ; $P _ { p }$ ; confidence 0.853
+
106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z130100111.png ; $\forall x ( ( \neg x = 0 ) \rightarrow \exists y ( y \in x / \backslash z ( z \in x \rightarrow \neg z \in y ) ) )$ ; confidence 0.346
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119903.png ; $D _ { i }$ ; confidence 0.087
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050160.png ; $\sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n } = \prod _ { m = 1 } ^ { \infty } ( 1 - y ^ { m } ) ^ { - P ^ { \# } ( m ) }$ ; confidence 0.346
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015095.png ; $P _ { 0 }$ ; confidence 0.510
+
108. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007024.png ; $\phi _ { int } = \phi _ { 0 } + \frac { \gamma \dot { b } ^ { 2 } \kappa } { 12 \mu }$ ; confidence 0.346
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182030.png ; $x _ { j }$ ; confidence 0.076
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301504.png ; $\partial _ { t ^ { 2 } ( \Gamma , t ) } = ( 2 \pi i ) ^ { - 1 } PV \int _ { - \infty } ^ { \infty } \frac { d \Gamma ^ { \prime } } { z ( \Gamma , t ) - z ( \Gamma ^ { \prime } , t ) }$ ; confidence 0.346
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016024.png ; $x _ { 3 }$ ; confidence 0.895
+
110. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020166.png ; $5 p$ ; confidence 0.346
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016060.png ; $x _ { i }$ ; confidence 0.336
+
111. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002014.png ; $L ( A ) = \int _ { M } \{ F _ { A } \wedge * F _ { A } \}$ ; confidence 0.346
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149054.png ; $x _ { 2 }$ ; confidence 0.678
+
112. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045370/g04537029.png ; $z \in C ^ { x }$ ; confidence 0.346
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017029.png ; $G _ { O }$ ; confidence 0.621
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015024.png ; $( ad X ) ( Y ) = [ X , Y ] , X , Y \in \mathfrak { g }$ ; confidence 0.346
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212020.png ; $G _ { Q }$ ; confidence 0.691
+
114. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663013.png ; $r _ { i } = r _ { i } ^ { * } + \alpha _ { i }$ ; confidence 0.346
  
115. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018065.png ; $WB ( L )$ ; confidence 0.925
+
115. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510116.png ; $K = l$ ; confidence 0.346
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018040.png ; $p ^ { A }$ ; confidence 0.439
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200167.png ; $V ^ { \lambda } : = \{ v \in V : h , v = \lambda ( h ) v \}$ ; confidence 0.346
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202001.png ; $H ^ { 2 }$ ; confidence 0.992
+
117. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000151.png ; $\vdash ( \lambda x , x ) : ( \sigma \rightarrow \sigma )$ ; confidence 0.346
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020014.png ; $f \in M$ ; confidence 0.996
+
118. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006089.png ; $z _ { j } + z$ ; confidence 0.345
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012065.png ; $f _ { N }$ ; confidence 0.999
+
119. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019019.png ; $t ( r + 1 , r ) \leq \frac { \operatorname { ln } r } { 2 r } ( 1 + \circ ( 1 ) )$ ; confidence 0.345
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012810/a0128105.png ; $t ^ { 2 }$ ; confidence 0.072
+
120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510158.png ; $d _ { 011 } < < 2$ ; confidence 0.345
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012093.png ; $f \in A$ ; confidence 0.665
+
121. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050102.png ; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n )$ ; confidence 0.345
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012092.png ; $f \in S$ ; confidence 0.870
+
122. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030022.png ; $O _ { H }$ ; confidence 0.345
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012033.png ; $| t | > 2$ ; confidence 0.997
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012068.png ; $k , N > 0$ ; confidence 0.776
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100347.png ; $x \in E$ ; confidence 0.345
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022076.png ; $\xi = v$ ; confidence 0.994
+
125. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011050.png ; $Z [ x _ { 1 } , \ldots , x _ { N } ]$ ; confidence 0.345
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022060.png ; $u ^ { 0 }$ ; confidence 0.466
+
126. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201906.png ; $\psi _ { W } ( x , p , t ) = \int _ { R ^ { 3 N } } e ^ { i p z / \hbar } \overline { \psi } ( x + \frac { z } { 2 } , t ) \psi ( x - \frac { z } { 2 } , t ) d z$ ; confidence 0.345
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024010.png ; $D _ { + }$ ; confidence 0.935
+
127. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021015.png ; $f _ { b } = \sum _ { r \ni b } F _ { r }$ ; confidence 0.345
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b1202502.png ; $B _ { K }$ ; confidence 0.591
+
128. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060102.png ; $m Y _ { 1 } , o b s ( \{ y _ { 1 } , 1 , y _ { 1 } , 3 , y _ { 1 } , s \} ) = 1$ ; confidence 0.345
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a011370125.png ; $f \in A$ ; confidence 0.999
+
129. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070240.png ; $\operatorname { ord } _ { T } ( d \tau _ { i } / d \tau )$ ; confidence 0.345
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022079.png ; $M _ { t }$ ; confidence 0.106
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200111.png ; $\alpha \in \mathfrak { g } ^ { n } _ { 1 } \alpha _ { 1 } + \ldots$ ; confidence 0.345
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017019.png ; $B _ { t }$ ; confidence 0.651
+
131. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004035.png ; $W$ ; confidence 0.345
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014300/a01430027.png ; $T _ { 1 }$ ; confidence 0.594
+
132. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070102.png ; $f _ { N } \in H ^ { 0 }$ ; confidence 0.345
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012270/a01227057.png ; $S _ { 1 }$ ; confidence 0.676
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197024.png ; $a$ ; confidence 0.345
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012270/a01227058.png ; $S _ { 2 }$ ; confidence 0.398
+
134. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201305.png ; $a$ ; confidence 0.345
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419091.png ; $x \in U$ ; confidence 0.502
+
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b1200502.png ; $B E$ ; confidence 0.345
  
136. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032097.png ; $m \in N$ ; confidence 0.982
+
136. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240119.png ; $H ^ { 1 } ( \overline { Y _ { 1 } ( N ) } ; \operatorname { sym } ^ { k - 2 } R ^ { 1 } \overline { f } \cdot z _ { p } ) \otimes Q _ { p }$ ; confidence 0.344
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032084.png ; $i \in N$ ; confidence 0.975
+
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022093.png ; $D _ { \xi } = ( 1 , v _ { 1 } , \dots , v _ { N } , | v | ^ { 2 } / 2 + I ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.344
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220050.png ; $z \in M$ ; confidence 0.485
+
138. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009097.png ; $[ . . ]$ ; confidence 0.344
  
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203604.png ; $k _ { B }$ ; confidence 0.623
+
139. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009019.png ; $f ( x ) = \int _ { \partial \xi ( x _ { 0 } , r ) } P ( x , \xi ) f ( \xi ) d \sigma ( \xi )$ ; confidence 0.344
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036043.png ; $( 1 + 1 )$ ; confidence 1.000
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050215.png ; $\sum _ { n \leq x } S ( n ) = A _ { 2 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty$ ; confidence 0.344
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182081.png ; $M _ { 2 }$ ; confidence 0.590
+
141. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d110020103.png ; $\mathfrak { c } _ { 1 } , \ldots , \mathfrak { c } _ { \mathfrak { N } } \in C$ ; confidence 0.344
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011070/a01107011.png ; $M _ { 1 }$ ; confidence 0.979
+
142. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011044.png ; $\Rightarrow w ( x _ { 1 } , \dots , x _ { x } ) = e$ ; confidence 0.344
  
143. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019059.png ; $k = 1 / 2$ ; confidence 0.633
+
143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002037.png ; $t ( X ) \leq 1$ ; confidence 0.344
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014050/a01405026.png ; $B _ { 2 }$ ; confidence 0.650
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004015.png ; $H _ { D }$ ; confidence 0.344
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020031.png ; $d i j > 0$ ; confidence 0.277
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350310.png ; $x \in H$ ; confidence 0.344
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200136.png ; $( .1 . )$ ; confidence 0.646
+
146. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130102.png ; $p$ ; confidence 0.344
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200177.png ; $P _ { + }$ ; confidence 0.730
+
147. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030101.png ; $\| ( x _ { X } + x ) / 2 \| \rightarrow \| x \|$ ; confidence 0.344
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400103.png ; $p \in C$ ; confidence 0.843
+
148. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011021.png ; $= | t | ^ { - n } \int \int e ^ { - 2 i \pi t ^ { - 1 } y \cdot \eta } _ { \alpha ( x + y , \xi + \eta ) d y d \eta }$ ; confidence 0.344
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400126.png ; $w \in W$ ; confidence 0.729
+
149. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c1301408.png ; $A ^ { * } = ( a _ { i , j } ) ^ { * } = ( \overline { a _ { j , i } } )$ ; confidence 0.344
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040032.png ; $f \in F$ ; confidence 0.670
+
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002019.png ; $\frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \| \alpha _ { n } + \beta _ { n } \| \stackrel { d } { \rightarrow } \| B \| ^ { 1 / 2 }$ ; confidence 0.344
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040054.png ; $S ^ { + }$ ; confidence 0.730
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006013.png ; $| x | _ { 2 } = ( \sum _ { i } | x _ { i } | ^ { 2 } ) ^ { 1 / 2 } , \| x \| _ { \infty } = \operatorname { max } _ { i } | x _ { i } |$ ; confidence 0.344
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040026.png ; $M = G / H$ ; confidence 0.966
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042086.png ; $Z / n Z$ ; confidence 0.344
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040035.png ; $( g , f )$ ; confidence 0.851
+
153. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003097.png ; $e _ { 0 } = y _ { 0 } - \vec { x } _ { 0 } ^ { \star } \vec { \theta }$ ; confidence 0.343
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040076.png ; $h ^ { * }$ ; confidence 0.602
+
154. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584018.png ; $( \kappa , - [ , ] )$ ; confidence 0.343
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040021.png ; $E _ { m }$ ; confidence 0.989
+
155. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130103.png ; $\operatorname { Ext } _ { \Delta } ^ { i } ( T , T ) = 0$ ; confidence 0.343
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040019.png ; $m \in M$ ; confidence 0.772
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210142.png ; $w$ ; confidence 0.343
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025021.png ; $E _ { 1 }$ ; confidence 0.481
+
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b1201609.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } p _ { i k } , j _ { i } x _ { k } , \quad x _ { i } \geq 0 , \sum _ { i } x _ { i } = 1$ ; confidence 0.343
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016750/b01675031.png ; $c ^ { + }$ ; confidence 0.607
+
158. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020022.png ; $\| p$ ; confidence 0.343
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043016.png ; $h \in H$ ; confidence 0.608
+
159. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l0570206.png ; $( F _ { n } ) _ { n \in N }$ ; confidence 0.343
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021032.png ; $H _ { y }$ ; confidence 0.603
+
160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190179.png ; $h _ { 1 } ^ { \prime }$ ; confidence 0.343
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b1302101.png ; $( N , B )$ ; confidence 0.929
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022016.png ; $f ( v ) = \frac { \rho } { ( 2 \pi T ) ^ { N / 2 } } e ^ { - p - u ^ { 2 } / 2 T }$ ; confidence 0.343
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042019.png ; $( V , W )$ ; confidence 0.998
+
162. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002052.png ; $9970$ ; confidence 0.343
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042083.png ; $q \in k$ ; confidence 0.501
+
163. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010138.png ; $v \geq 5$ ; confidence 0.343
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042082.png ; $k ^ { * }$ ; confidence 0.482
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305905.png ; $\{ c _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.343
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420153.png ; $C ^ { 0 }$ ; confidence 0.525
+
165. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009063.png ; $\| P ( D ) ( \phi ) \| _ { 2 } \geq G \| \phi \| _ { 2 } ( L ^ { 2 } \text { norms } )$ ; confidence 0.343
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068012.png ; $b _ { i }$ ; confidence 0.454
+
166. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007047.png ; $\{ F ( z _ { N } ) \}$ ; confidence 0.343
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406079.png ; $B ^ { * }$ ; confidence 0.700
+
167. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006050.png ; $\alpha \in \hat { D }$ ; confidence 0.342
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043099.png ; $( H , R )$ ; confidence 0.996
+
168. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013018.png ; $\| \lambda \theta ^ { N } \| \rightarrow 0$ ; confidence 0.342
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610113.png ; $n _ { + }$ ; confidence 0.502
+
169. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043069.png ; $\Psi ( y \bigotimes x ) = q x \otimes y + ( q ^ { 2 } - 1 ) y \otimes x$ ; confidence 0.342
  
170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043037.png ; $A _ { q }$ ; confidence 0.861
+
170. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002071.png ; $t < T$ ; confidence 0.342
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022080.png ; $X \in T$ ; confidence 0.262
+
171. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221108.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ X ^ { 2 } \leq x | H _ { 0 } \} = P \{ \chi _ { k - 1 } ^ { 2 } \leq x \}$ ; confidence 0.342
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b1302201.png ; $P _ { K }$ ; confidence 0.902
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016043.png ; $\{ f _ { i } \} _ { 1 } ^ { n _ { 1 } }$ ; confidence 0.342
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660124.png ; $x \in B$ ; confidence 0.923
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026029.png ; $11$ ; confidence 0.342
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110350/b11035010.png ; $M _ { y }$ ; confidence 0.832
+
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020050.png ; $a _ { i i } = 0$ ; confidence 0.342
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023018.png ; $T _ { m }$ ; confidence 0.737
+
175. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012035.png ; $a : g \rightarrow g ^ { \prime }$ ; confidence 0.342
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a0116204.png ; $H _ { p }$ ; confidence 0.085
+
176. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015014.png ; $R ^ { p \times N }$ ; confidence 0.342
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023033.png ; $u \in V$ ; confidence 0.954
+
177. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840222.png ; $A _ { L }$ ; confidence 0.342
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044091.png ; $h \in G$ ; confidence 0.578
+
178. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002032.png ; $d \gamma = | \langle v , N _ { X } \rangle | d v d x$ ; confidence 0.342
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440114.png ; $b ^ { G }$ ; confidence 0.996
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a1302206.png ; $0 \rightarrow A \stackrel { f } { \rightarrow } B \stackrel { g } { \rightarrow } C \rightarrow 0$ ; confidence 0.342
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071033.png ; $B _ { i }$ ; confidence 0.376
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340189.png ; $\overline { \Sigma }$ ; confidence 0.342
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046041.png ; $V _ { H }$ ; confidence 0.995
+
181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230162.png ; $= \int _ { M } \sigma ^ { k + 1 } ^ { * } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ]$ ; confidence 0.342
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046045.png ; $x _ { t }$ ; confidence 0.240
+
182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012053.png ; $= \operatorname { dom } a$ ; confidence 0.342
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025021.png ; $( \pi )$ ; confidence 0.664
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022024.png ; $g \tilde { h } = h$ ; confidence 0.342
  
184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049042.png ; $B \in A$ ; confidence 0.746
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008072.png ; $t _ { N } ( x ) = \frac { c _ { N } } { s } ( 1 + \frac { ( x - m ) ^ { 2 } } { s ^ { 2 } n } ) ^ { - ( n + 1 ) / 2 }$ ; confidence 0.342
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049052.png ; $E \in A$ ; confidence 0.564
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460168.png ; $x ^ { 2 }$ ; confidence 0.342
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100387.png ; $K _ { 2 }$ ; confidence 0.828
+
186. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008018.png ; $\sum _ { i = 0 } ^ { m } a _ { m - i } [ A _ { 1 } ^ { m - i } , A _ { 1 } ^ { n - i - 1 } A _ { 2 } ] = 0$ ; confidence 0.342
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130059.png ; $S ^ { n }$ ; confidence 0.815
+
187. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230105.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { R } }$ ; confidence 0.342
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220010.png ; $f _ { 0 }$ ; confidence 0.987
+
188. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w1200508.png ; $C ^ { \infty } ( R ^ { m } , R )$ ; confidence 0.341
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028054.png ; $B ( 2 n )$ ; confidence 0.999
+
189. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150166.png ; $\mu ( A ) = \operatorname { inf } \{ \| 7 \| : \alpha ( A - T ) = \infty \}$ ; confidence 0.341
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050021.png ; $W ^ { 0 }$ ; confidence 0.217
+
190. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001025.png ; $\{ P , + , , \vee , \wedge \}$ ; confidence 0.341
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050022.png ; $W ^ { + }$ ; confidence 0.937
+
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032096.png ; $a _ { m } = m ^ { 1 / p }$ ; confidence 0.341
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b1205007.png ; $z _ { 0 }$ ; confidence 0.851
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020010.png ; $D A$ ; confidence 0.341
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050017.png ; $M _ { t }$ ; confidence 0.573
+
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200144.png ; $\frac { k = m + 1 , \ldots , m + | g ( k ) | } { \sum _ { j = 1 } ^ { N } | b _ { j } z _ { j } ^ { k } | } \geq \frac { 1 } { n } ( \frac { \delta } { 2 } ) ^ { n - 1 }$ ; confidence 0.341
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050052.png ; $X \in R$ ; confidence 0.592
+
194. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005024.png ; $\frac { 1 } { 2 \sqrt { 2 \pi } } \int _ { 0 } ^ { \infty } \int _ { 0 } ^ { \infty } \operatorname { exp } ( - \frac { 1 } { 2 } ( \frac { x u } { v } + \frac { x v } { u } + \frac { u v } { x } ) ) \times \times ( \frac { 1 } { x } + \frac { 1 } { u } + \frac { 1 } { v } ) f ( u ) g ( v ) d u d v$ ; confidence 0.341
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b1205106.png ; $x _ { i }$ ; confidence 0.301
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120080/b1200808.png ; $E _ { WOr } ( P , m ) = \operatorname { sup } _ { p \in P } | \epsilon ( p , m ) |$ ; confidence 0.341
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051057.png ; $H _ { + }$ ; confidence 0.849
+
196. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008026.png ; $L _ { 2 } ^ { 11 }$ ; confidence 0.341
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016016.png ; $x ^ { 2 }$ ; confidence 0.348
+
197. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120160.png ; $M _ { p }$ ; confidence 0.341
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051054.png ; $H _ { c }$ ; confidence 0.467
+
198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007065.png ; $v _ { t } / r ^ { t }$ ; confidence 0.341
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052089.png ; $S _ { y }$ ; confidence 0.407
+
199. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007012.png ; $n \in I$ ; confidence 0.341
  
200. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052034.png ; $B _ { c }$ ; confidence 0.346
+
200. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001042.png ; $V ^ { * } = V \cup V _ { 1 } \cup \ldots \cup V _ { t }$ ; confidence 0.340
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100347.png ; $x \in E$ ; confidence 0.345
+
201. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009070.png ; $P ( T ) = T ^ { x } + a _ { x } - 1 T ^ { x - 1 } + \ldots + a _ { 0 }$ ; confidence 0.340
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b1105803.png ; $E ^ { * }$ ; confidence 0.878
+
202. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911904.png ; $V = V _ { \square } \oplus V _ { T }$ ; confidence 0.340
  
203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b11092021.png ; $y \in E$ ; confidence 0.800
+
203. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019030.png ; $= \sum _ { k , l } A _ { k l } \int _ { R ^ { 3 N } } e ^ { i p z / \hbar } u _ { l k } ( x - \frac { z } { 2 } ) \overline { u } / ( x + \frac { z } { 2 } ) d z$ ; confidence 0.340
  
204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290144.png ; $M = dim$ ; confidence 0.876
+
204. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110113.png ; $( \frac { \partial \phi } { \partial t } ) | _ { x _ { k } ^ { 0 } } = \frac { D \phi } { D t } , ( \frac { \partial \phi } { \partial t } ) | _ { x _ { i } } = \frac { \partial \phi } { \partial t } , ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } ^ { 0 } } = v _ { i }$ ; confidence 0.340
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029046.png ; $R _ { p }$ ; confidence 0.868
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130060/w13006038.png ; $T g , x$ ; confidence 0.340
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290193.png ; $R _ { M }$ ; confidence 0.616
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c1203008.png ; $S _ { i } ^ { * } S _ { j } = 0 , i \neq j$ ; confidence 0.340
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029034.png ; $A _ { p }$ ; confidence 0.885
+
207. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014026.png ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } \rho ( \alpha , p ) } { \alpha x - p } d p d \alpha$ ; confidence 0.340
  
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290183.png ; $d ^ { + }$ ; confidence 0.959
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106407.png ; $> r$ ; confidence 0.340
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290153.png ; $M _ { p }$ ; confidence 0.798
+
209. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022031.png ; $\{ e _ { 1 } , \ldots , e _ { x } \}$ ; confidence 0.340
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053016.png ; $i ^ { x }$ ; confidence 0.618
+
210. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160149.png ; $P H$ ; confidence 0.340
  
211. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030077.png ; $2 ^ { 9 }$ ; confidence 1.000
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012110/a01211032.png ; $T _ { i }$ ; confidence 0.340
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014120/a01412045.png ; $2 ^ { m }$ ; confidence 0.403
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240488.png ; $( \beta _ { t 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300143.png ; $D ( 2 k )$ ; confidence 0.999
+
213. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150276.png ; $p ^ { \prime }$ ; confidence 0.339
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055062.png ; $b _ { p }$ ; confidence 0.421
+
214. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019017.png ; $s ( N \backslash L )$ ; confidence 0.339
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055050.png ; $C * ( M )$ ; confidence 0.644
+
215. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064025.png ; $T ( a ) = \operatorname { Ran } ( \alpha ) \cup \{ z \notin \operatorname { Ran } ( \alpha ) : \text { wind } ( \alpha - z ) \neq 0 \}$ ; confidence 0.339
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060011.png ; $C ^ { 2 }$ ; confidence 0.814
+
216. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023067.png ; $K _ { 2 } ( m \times m ) = I _ { m }$ ; confidence 0.339
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193047.png ; $p \in M$ ; confidence 0.693
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017020.png ; $d S _ { t } = \mu S _ { t } d t + \sigma S _ { t } d w _ { t }$ ; confidence 0.339
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071045.png ; $x \in M$ ; confidence 0.476
+
218. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220144.png ; $\dot { i } = 0$ ; confidence 0.339
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a01318019.png ; $C ^ { 1 }$ ; confidence 0.906
+
219. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110330/c11033012.png ; $p$ ; confidence 0.339
  
220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001040.png ; $P ^ { Y }$ ; confidence 0.110
+
220. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009051.png ; $G ^ { * * }$ ; confidence 0.339
  
221. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001062.png ; $p ^ { n }$ ; confidence 0.183
+
221. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057630/l05763058.png ; $\alpha \in P$ ; confidence 0.339
  
222. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010173.png ; $( a , 0 )$ ; confidence 0.277
+
222. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009073.png ; $H _ { k } ( x ) = ( - 1 ) ^ { n } e ^ { x ^ { 2 } / 2 } D _ { x } ^ { k } e ^ { - x ^ { 2 } / 2 }$ ; confidence 0.339
  
223. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200904.png ; $\{ x \}$ ; confidence 0.856
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005064.png ; $A ( 0 ) uv + f ( 0 ) \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.339
  
224. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c1300108.png ; $N _ { V }$ ; confidence 0.944
+
224. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010017.png ; $\{ A ; \} _ { i = 1 } ^ { n } \subset A$ ; confidence 0.339
  
225. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001027.png ; $c _ { 0 }$ ; confidence 0.425
+
225. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020129.png ; $F * = q * p * ^ { - 1 }$ ; confidence 0.339
  
226. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002073.png ; $R ^ { k }$ ; confidence 0.944
+
226. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130380/s13038024.png ; $\operatorname { ln } t _ { \tau } A$ ; confidence 0.339
  
227. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002012.png ; $v ^ { n }$ ; confidence 0.170
+
227. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201301.png ; $\int _ { x } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 } i _ { ( n + 1 ) - 1 } [ f ] =$ ; confidence 0.339
  
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002057.png ; $SO ( n )$ ; confidence 0.906
+
228. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012051.png ; $\chi _ { j + 1 } ^ { \prime } = \operatorname { codom } \alpha _ { j } ^ { \prime }$ ; confidence 0.339
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a01318024.png ; $( u , v )$ ; confidence 0.990
+
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040182.png ; $\Sigma _ { n = 1 } ^ { \infty } | x ^ { * } ( x _ { n } ) | < \infty$ ; confidence 0.339
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301058.png ; $R ^ { N }$ ; confidence 0.460
+
230. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036022.png ; $P z$ ; confidence 0.338
  
231. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003012.png ; $t \in J$ ; confidence 0.913
+
231. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b110380115.png ; $8$ ; confidence 0.338
  
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003029.png ; $h _ { K }$ ; confidence 0.524
+
232. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110215.png ; $| \operatorname { Im } \zeta | / | \operatorname { Re } \zeta | \rightarrow 0$ ; confidence 0.338
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220053.png ; $z \in D$ ; confidence 0.635
+
233. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006045.png ; $( x _ { j _ { 1 } } , \dots , x _ { j _ { k } } )$ ; confidence 0.338
  
234. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007020.png ; $d ^ { x }$ ; confidence 0.865
+
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024022.png ; $\langle x y z \} : = \{ y , z \} x$ ; confidence 0.338
  
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008075.png ; $z _ { t }$ ; confidence 0.437
+
235. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001022.png ; $\hat { R } ^ { 0 } ( \pi _ { 1 } ( X , * ) )$ ; confidence 0.338
  
236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008065.png ; $m ^ { 2 }$ ; confidence 0.995
+
236. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008071.png ; $\mathfrak { g } = \text { Lie } ( G )$ ; confidence 0.338
  
237. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008056.png ; $E A = A E$ ; confidence 0.997
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027011.png ; $Q _ { n } : Y \rightarrow X _ { r }$ ; confidence 0.338
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c1300608.png ; $J \in V$ ; confidence 0.310
+
238. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013020.png ; $= ( \frac { e ^ { \sum _ { 1 } ^ { \infty } x _ { i } ^ { i } z ^ { i } } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) z ^ { n } } { \tau _ { n } ( x , y ) } | _ { n \in Z } , \Psi _ { 2 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } y _ { i } z ^ { - i } } S _ { 2 } \chi ( z ) =$ ; confidence 0.338
  
239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120120/c1201202.png ; $I _ { v }$ ; confidence 0.095
+
239. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025056.png ; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 } \subset D ( R ^ { x } )$ ; confidence 0.338
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139032.png ; $u _ { i }$ ; confidence 0.260
+
240. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
  
241. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007070.png ; $( e - d )$ ; confidence 1.000
+
241. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064046.png ; $\alpha ( e ^ { i \theta } ) = b ( e ^ { i \theta } ) \prod _ { r = 1 } ^ { R } \omega _ { \alpha _ { r } , \beta _ { r } } ( e ^ { i \langle \theta - \theta _ { r } \rangle } )$ ; confidence 0.338
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110810/b1108106.png ; $D _ { t }$ ; confidence 0.702
+
242. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011040.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \approx \Delta \frac { 1 } { x } = \frac { 1 } { x ( x + 1 ) } , x = 1,2 , \dots$ ; confidence 0.338
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015540/b01554032.png ; $( 0,0 )$ ; confidence 1.000
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040515.png ; $\mathfrak { A } = \langle A , C \rangle$ ; confidence 0.337
  
244. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070228.png ; $C _ { 2 }$ ; confidence 0.803
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127908.png ; $98$ ; confidence 0.337
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c1300802.png ; $( L / K )$ ; confidence 0.765
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110650/b11065036.png ; $P \in P$ ; confidence 0.337
  
246. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008031.png ; $P _ { A }$ ; confidence 0.646
+
246. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017054.png ; $y > z$ ; confidence 0.337
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600249.png ; $L / K$ ; confidence 0.986
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020049.png ; $\mathfrak { p } _ { i } ( t ) = \prod _ { m = 1 , m \neq i } ^ { n } \frac { t - t _ { m } } { t _ { i } - t _ { m } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.337
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006034.png ; $A _ { K }$ ; confidence 0.994
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260123.png ; $y _ { i }$ ; confidence 0.337
  
249. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008029.png ; $\# A / n$ ; confidence 0.469
+
249. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012010.png ; $1.1 p$ ; confidence 0.337
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010016.png ; $x \in I$ ; confidence 0.295
+
250. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w1201809.png ; $V ( A )$ ; confidence 0.337
  
251. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300905.png ; $( N + 1 )$ ; confidence 0.974
+
251. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065010.png ; $\rho _ { \aleph } + 1 = \Phi _ { N } + 1 ( 0 )$ ; confidence 0.337
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211052.png ; $k - m - 1$ ; confidence 0.999
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017020.png ; $p ( \alpha , t ) = \operatorname { coo } ^ { \lambda ^ { * } ( t - \alpha ) } \Pi ( \alpha ) ( 1 + \Omega ( t - \alpha ) )$ ; confidence 0.337
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110750/b1107505.png ; $X ^ { 2 }$ ; confidence 0.603
+
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043014.png ; $a , b \in B$ ; confidence 0.337
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610106.png ; $A \in A$ ; confidence 0.826
+
254. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000191.png ; $( \lambda x , f ( x ) ) \cdot e = f ( e )$ ; confidence 0.337
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044012.png ; $f _ { 1 }$ ; confidence 0.997
+
255. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006062.png ; $m 0 = n , m 1 = a$ ; confidence 0.337
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044013.png ; $f _ { 2 }$ ; confidence 0.907
+
256. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230171.png ; $\left( \begin{array} { c } { 0 } \\ { G _ { i + 1 } } \end{array} \right) = Z _ { i } G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 1 } & { 0 } \\ { 0 } & { 0 } \end{array} \right) + G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 0 } & { 0 } \\ { 0 } & { I _ { p + q - 1 } } \end{array} \right)$ ; confidence 0.337
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301001.png ; $( X , A )$ ; confidence 0.924
+
257. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009010.png ; $G = GL _ { n } ( K )$ ; confidence 0.337
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016038.png ; $[ 0,1 ]$ ; confidence 1.000
+
258. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230150.png ; $( ( X _ { n } + 1 , B _ { n + 1 } ) , f _ { n + 1 } ) = ( ( X _ { n } ^ { + } , ( \phi _ { * } ^ { + } ) ^ { - 1 } \phi _ { * } B _ { n } ) , f _ { n } \circ \phi ^ { - 1 } \circ \phi ^ { + } )$ ; confidence 0.337
  
259. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c13013020.png ; $d K / d t$ ; confidence 0.988
+
259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015080.png ; $G$ ; confidence 0.337
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014039.png ; $A _ { i }$ ; confidence 0.372
+
260. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040159.png ; $| x | | y | | _ { X ^ { \prime } } \leq ( 1 + \epsilon ) \| f \| _ { L _ { 1 } }$ ; confidence 0.337
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220108.png ; $R _ { 1 }$ ; confidence 0.959
+
261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026060.png ; $( L _ { h k } U ) _ { j } ^ { n } \equiv 0$ ; confidence 0.337
  
262. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014010.png ; $I \in V$ ; confidence 0.273
+
262. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020016.png ; $R [ K _ { X } ( x _ { \nu } , . ) ] = 0 , \quad \nu = 2 , \dots , n - 1$ ; confidence 0.336
  
263. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c020280152.png ; $x \in K$ ; confidence 0.262
+
263. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013094.png ; $\int _ { D } z ^ { n } | \varphi ( z ) | ^ { p } d A ( z ) = 0$ ; confidence 0.336
  
264. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015015.png ; $N \in N$ ; confidence 0.472
+
264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034055.png ; $\mathfrak { c } _ { 1 } ( A )$ ; confidence 0.336
  
265. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327033.png ; $s p ( A )$ ; confidence 0.488
+
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022038.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = \frac { M _ { f } - f } { \varepsilon }$ ; confidence 0.336
  
266. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090102.png ; $p \in S$ ; confidence 0.428
+
266. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290147.png ; $L = M , \phi ^ { 0 p } = id _ { L }$ ; confidence 0.336
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327021.png ; $p \in I$ ; confidence 0.224
+
267. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002063.png ; $I _ { O }$ ; confidence 0.336
  
268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170175.png ; $2 k j - 1$ ; confidence 0.675
+
268. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007063.png ; $\alpha \mapsto \alpha \dot { b }$ ; confidence 0.336
  
269. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170110.png ; $M _ { z }$ ; confidence 0.636
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012033.png ; $( q , q ^ { \alpha - 2 } )$ ; confidence 0.336
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165043.png ; $r _ { j }$ ; confidence 0.381
+
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d12025012.png ; $X \rightarrow x - \phi ( x )$ ; confidence 0.336
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017027.png ; $K _ { R }$ ; confidence 0.426
+
271. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430126.png ; $\Delta u ^ { i } \square j = u ^ { i } \square _ { \alpha } \otimes u ^ { \alpha } \square j , \varepsilon u ^ { i } \square j = \delta ^ { i } \square$ ; confidence 0.336
  
272. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160118.png ; $B \in C$ ; confidence 0.479
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290104.png ; $R ( I ) = \oplus _ { n } \geq 0 I ^ { n }$ ; confidence 0.336
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160109.png ; $w \in A$ ; confidence 0.532
+
273. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016060.png ; $x _ { i }$ ; confidence 0.336
  
274. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160100.png ; $w \in A$ ; confidence 0.873
+
274. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004017.png ; $u _ { i } ^ { n }$ ; confidence 0.336
  
275. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016043.png ; $L = DSP$ ; confidence 0.977
+
275. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025095.png ; $v \in L ^ { \infty } ( R ^ { n } )$ ; confidence 0.336
  
276. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160119.png ; $A \in C$ ; confidence 0.997
+
276. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004012.png ; $x _ { 1 } , \dots , x _ { n } \in G$ ; confidence 0.336
  
277. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016032.png ; $\in NP$ ; confidence 0.395
+
277. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003028.png ; $X ( f g ) = \mu ( \Delta X . ( f \otimes g ) )$ ; confidence 0.335
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160173.png ; $P = BPP$ ; confidence 0.768
+
278. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011017.png ; $\tilde { u } = u$ ; confidence 0.335
  
279. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016054.png ; $( \pi )$ ; confidence 0.068
+
279. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027053.png ; $Q _ { j } ( z ) + P _ { j } ( z ) = 0 , \quad j = 1 , \dots , n$ ; confidence 0.335
  
280. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c1301608.png ; $w \in S$ ; confidence 0.979
+
280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e1202701.png ; $x _ { 1 } < \ldots < x _ { m }$ ; confidence 0.335
  
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180491.png ; $( N , g )$ ; confidence 0.772
+
281. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016027.png ; $X = \left( \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right) , M = \left( \begin{array} { c } { M _ { 1 } } \\ { M _ { 2 } } \end{array} \right) , \Sigma = \left( \begin{array} { l l } { \Sigma _ { 11 } } & { \Sigma _ { 12 } } \\ { \Sigma _ { 21 } } & { \Sigma _ { 22 } } \end{array} \right)$ ; confidence 0.335
  
282. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180225.png ; $( M , g )$ ; confidence 0.940
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040459.png ; $\operatorname { Mod } ^ { * } L D ( K ) = ( SPP _ { U } K ) ^ { * } L$ ; confidence 0.335
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022098.png ; $( p + 1 )$ ; confidence 1.000
+
283. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013070.png ; $( T , ) : D ^ { b } ( \Lambda ) \rightarrow D ^ { b } ( \Gamma )$ ; confidence 0.335
  
284. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180452.png ; $P \in N$ ; confidence 0.448
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160144.png ; $\overline { Q _ { i } } = n _ { i } q _ { i }$ ; confidence 0.335
  
285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180497.png ; $( x , r )$ ; confidence 0.948
+
285. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305101.png ; $g : V \rightarrow Z ^ { 0 }$ ; confidence 0.335
  
286. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018061.png ; $P \in M$ ; confidence 0.252
+
286. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130070/g13007029.png ; $\alpha \in \varphi ( A )$ ; confidence 0.335
  
287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180351.png ; $B ( g ) =$ ; confidence 1.000
+
287. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009018.png ; $\pi Y ( \alpha ) \in T _ { X }$ ; confidence 0.335
  
288. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236040.png ; $p + q = n$ ; confidence 0.995
+
288. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500093.png ; $H ( U )$ ; confidence 0.335
  
289. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180437.png ; $k < n / 2$ ; confidence 0.965
+
289. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004025.png ; $n \in N : = \{ 1,2 , \ldots \} , z \in C \backslash Z _ { 0 } ^ { - }$ ; confidence 0.335
  
290. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048021.png ; $X \in N$ ; confidence 0.196
+
290. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s1203502.png ; $= b _ { 1 } u ( t - 1 ) + \ldots + b _ { m } u ( t - m ) + e ( t )$ ; confidence 0.335
  
291. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019060.png ; $R ^ { i }$ ; confidence 0.333
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040638.png ; $\langle N e _ { S _ { P } } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } \rangle$ ; confidence 0.335
  
292. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019033.png ; $( N , L )$ ; confidence 0.964
+
292. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020216.png ; $\dot { k } = k + 1$ ; confidence 0.335
  
293. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019059.png ; $B ^ { i }$ ; confidence 0.409
+
293. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012029.png ; $0 \neq I < R$ ; confidence 0.335
  
294. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019014.png ; $n d ( D )$ ; confidence 0.580
+
294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320123.png ; $\operatorname { ev } _ { X } ( 1 \otimes \xi _ { i } ) = 0$ ; confidence 0.334
  
295. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019041.png ; $C _ { 1 }$ ; confidence 0.667
+
295. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005058.png ; $F + ( x ) = \sum _ { j = 1 } ^ { J } ( m _ { j } ^ { + } ) ^ { 2 } e ^ { - k _ { j } x } + \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( k ) e ^ { i k x } d k$ ; confidence 0.334
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019047.png ; $K ( T M )$ ; confidence 0.804
+
296. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300505.png ; $W ( \mathfrak { g } ) = \bigwedge \mathfrak { g } ^ { * } \otimes S \mathfrak { g } ^ { * }$ ; confidence 0.334
  
297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210101.png ; $( X , A )$ ; confidence 0.992
+
297. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010010.png ; $B _ { d } ( x )$ ; confidence 0.334
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202206.png ; $( X , * )$ ; confidence 0.997
+
298. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050180.png ; $\sigma _ { T } ( ( L _ { A } , R _ { B } ) , L ( H ) ) = \sigma _ { T } ( A , H ) \times \sigma _ { T } ( B , H )$ ; confidence 0.334
  
299. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c0258308.png ; $\{ 0 \}$ ; confidence 1.000
+
299. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012049.png ; $\alpha ^ { \prime } = ( \alpha ^ { \prime } 1 , \ldots , \alpha ^ { \prime m } )$ ; confidence 0.334
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110010/c1100101.png ; $A _ { 0 }$ ; confidence 0.904
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240184.png ; $\eta _ { i } - \eta _ { s }$ ; confidence 0.334

Revision as of 00:10, 13 February 2020

List

1. t120140134.png ; $\operatorname { dist } _ { \lambda } ( \phi , \psi ) = \operatorname { limsup } _ { S \rightarrow \lambda } | \phi ( \zeta ) - \psi ( \zeta ) |$ ; confidence 0.354

2. t12021059.png ; $GF ( q ) ^ { \gamma }$ ; confidence 0.354

3. a0104606.png ; $a \in D$ ; confidence 0.354

4. a13013088.png ; $t$ ; confidence 0.354

5. t13008016.png ; $V _ { X } = 0$ ; confidence 0.354

6. c120180279.png ; $\Phi \in \otimes ^ { \Psi } E$ ; confidence 0.354

7. a0120608.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { m } )$ ; confidence 0.354

8. a13023029.png ; $1 = 1,2 , \ldots$ ; confidence 0.354

9. b1205104.png ; $f ( x ^ { * } ) \leq f ( x ) \text { for all xnear } x ^ { * }$ ; confidence 0.354

10. b120320108.png ; $\sigma ( \Gamma )$ ; confidence 0.354

11. a12020043.png ; $\mathfrak { p } _ { i } ( t ) = q _ { i } ( t ) \prod _ { m = 1 , m \neq i } ^ { n } ( t - t _ { m } ) ^ { \gamma _ { m } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.353

12. b12017050.png ; $W _ { 0 } ^ { Y }$ ; confidence 0.353

13. d120280150.png ; $z \in C ^ { x } \backslash \overline { D } _ { m }$ ; confidence 0.353

14. s12020047.png ; $\sigma \in S _ { y }$ ; confidence 0.353

15. b13002063.png ; $JB ^ { * }$ ; confidence 0.353

16. l12004012.png ; $I _ { i } = [ x _ { i - 1 } / 2 , x _ { i + 1 / 2 } ]$ ; confidence 0.353

17. a12013031.png ; $( X _ { x } - 1 , \theta _ { x } - 1 , \ldots )$ ; confidence 0.353

18. m12011051.png ; $H * ( \overline { M } ) = H * ( F )$ ; confidence 0.353

19. l12004077.png ; $\hat { f } _ { i } ^ { + } = f ( \hat { u } _ { i } ^ { + } )$ ; confidence 0.353

20. m12007049.png ; $00 > 0$ ; confidence 0.353

21. v1300602.png ; $C [ y _ { 1 } / 2 , y _ { 3 } / 2 , \dots ]$ ; confidence 0.353

22. s1301104.png ; $H ^ { * } ( F _ { n } , Z ) \simeq Z [ x _ { 1 } , \dots , x _ { n } ] / Z ^ { + } [ x _ { 1 } , \dots , x _ { n } ] ^ { S _ { n } }$ ; confidence 0.353

23. m1300605.png ; $a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1$ ; confidence 0.353

24. l120170124.png ; $K ^ { 2 } \times I \searrow L ^ { 2 }$ ; confidence 0.353

25. c13019036.png ; $N + I$ ; confidence 0.353

26. e12015032.png ; $x ^ { r }$ ; confidence 0.352

27. t120200190.png ; $\kappa \leq | \operatorname { arc } z _ { j } | < \pi$ ; confidence 0.352

28. a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352

29. n12011047.png ; $\xi _ { z } * : R ^ { n } \rightarrow [ 0,1 ]$ ; confidence 0.352

30. f120210103.png ; $= [ \sum _ { l = 0 } ^ { \infty } \sum _ { n = 0 } ^ { N } a _ { l } ^ { n } z ^ { n + i } ( \frac { \partial } { \partial z } ) ^ { n } ] [ \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { \lambda + k } ] =$ ; confidence 0.352

31. k12013016.png ; $Q _ { 2 } n + 1$ ; confidence 0.352

32. a130040288.png ; $CoA$ ; confidence 0.351

33. n067520212.png ; $G = GL _ { m } ( K ) \times GL _ { n } ( K )$ ; confidence 0.351

34. w13009090.png ; $( \iota ^ { - 1 } g )$ ; confidence 0.351

35. t12005092.png ; $\left\{ \begin{array} { l } { j _ { 1 } \geq \ldots \geq j _ { s } } \\ { i _ { s } \geq j _ { s } \geq 0 \quad \forall s , 1 \leq s \leq r } \\ { j _ { 1 } > 0 } \end{array} \right.$ ; confidence 0.351

36. r13014025.png ; $\operatorname { lim } _ { n \rightarrow \infty } \{ \operatorname { inf } _ { C } \| R ^ { n } - q \| ^ { 1 / n } \} = 0$ ; confidence 0.351

37. w12005059.png ; $f : R ^ { \mathfrak { W } } \rightarrow R ^ { k }$ ; confidence 0.351

38. d03011027.png ; $i ^ { + }$ ; confidence 0.351

39. c120180183.png ; $A ^ { 2 } E \subset \otimes ^ { 2 } E$ ; confidence 0.351

40. k12005020.png ; $\mu \overline { x } ^ { 1 } B _ { j }$ ; confidence 0.351

41. b13023038.png ; $T _ { i j }$ ; confidence 0.351

42. b01501039.png ; $R ^ { n + r }$ ; confidence 0.351

43. b11033014.png ; $\omega _ { i }$ ; confidence 0.351

44. l12003023.png ; $S q ^ { n } x _ { n } = x _ { n } ^ { 2 }$ ; confidence 0.350

45. c1301107.png ; $f ( y ) - f ( x ) + \sigma \| y - x \| ^ { 2 } \geq \{ \zeta , y - x \}$ ; confidence 0.350

46. l06105053.png ; $( E ) < \delta \Rightarrow \operatorname { mes } ( f ( E ) ) < \epsilon$ ; confidence 0.350

47. m12016058.png ; $R ^ { p } 1 ^ { N } 1$ ; confidence 0.350

48. j120020111.png ; $P [ X ^ { * } > \lambda ] \leq C e ^ { - \lambda / e }$ ; confidence 0.350

49. a12020082.png ; $j$ ; confidence 0.350

50. s13049036.png ; $\sum _ { k = 0 } ^ { n ( P ) } \frac { | F \cap N _ { k } | } { | N _ { k } | } \leq 1$ ; confidence 0.350

51. l12019030.png ; $x = \operatorname { col } ( x _ { 1 } \ldots x _ { x } )$ ; confidence 0.350

52. g13003060.png ; $A ( \Omega ) = B / I 0 , \operatorname { loc }$ ; confidence 0.350

53. k13002072.png ; $q = \frac { n 1 - n 2 } { n 1 + n 2 }$ ; confidence 0.350

54. d032600120.png ; $| I$ ; confidence 0.350

55. b01566023.png ; $T I$ ; confidence 0.350

56. l13006063.png ; $m _ { i - 1 } = a _ { i - 1 } m _ { i } + m _ { i + 1 } , i = 1,2 ,$ ; confidence 0.350

57. t120200218.png ; $\operatorname { min } _ { r = m + 1 , \ldots , m + K } | G _ { 1 } ( r ) | \geq \frac { 1 } { P _ { m , K } } | \sum _ { j = 1 } ^ { n } P _ { j } ( 0 ) |$ ; confidence 0.350

58. i13004025.png ; $\sum _ { n = 0 } ^ { \infty } \{ \sum _ { m = 1 } ^ { \infty } [ \sum _ { k = m 2 ^ { n } } ^ { ( m + 1 ) 2 ^ { n } - 1 } | \Delta d _ { k } | ] ^ { 2 } \} ^ { 1 / 2 } < \infty$ ; confidence 0.350

59. s12032067.png ; $\Pi ( M ) _ { \circlearrowleft } = M _ { I }$ ; confidence 0.349

60. d1200708.png ; $u \in E$ ; confidence 0.349

61. k1300703.png ; $u = h _ { x }$ ; confidence 0.349

62. c13005039.png ; $N _ { Aut } \Gamma ( G ) = G . \operatorname { Aut } ( G , S )$ ; confidence 0.349

63. t1200501.png ; $f : V ^ { N } \rightarrow W ^ { p }$ ; confidence 0.349

64. f12019064.png ; $\Omega \geq 2$ ; confidence 0.349

65. c120180404.png ; $A ( \mathfrak { g } ) = 0 \in S ^ { 2 } E$ ; confidence 0.349

66. r13008057.png ; $f ( z , z 0 ) = \frac { 1 } { K _ { D } ( z 0 , z _ { 0 } ) } \int _ { z _ { 0 } } ^ { z } K _ { D } ( t , z _ { 0 } ) d t$ ; confidence 0.349

67. c13010022.png ; $( C ) \int _ { X } f d m = \sum _ { i = 1 } ^ { n } ( a _ { i } - a _ { i - 1 } ) m ( B _ { i } )$ ; confidence 0.349

68. a1106004.png ; $F _ { n }$ ; confidence 0.349

69. h13002015.png ; $w _ { i } ^ { 1 } = \ldots = w _ { i } ^ { q }$ ; confidence 0.349

70. t120200148.png ; $\dot { k } \in [ m + 1 , m + n ]$ ; confidence 0.349

71. i13001026.png ; $i 0$ ; confidence 0.349

72. s13013024.png ; $U _ { 1 }$ ; confidence 0.348

73. f13024016.png ; $b \in U ( \varepsilon )$ ; confidence 0.348

74. k05507046.png ; $\omega = \sum g _ { \alpha \beta } d z ^ { \alpha } \wedge d z \square ^ { \beta }$ ; confidence 0.348

75. x12002032.png ; $0 \neq I _ { \delta } \lessdot R$ ; confidence 0.348

76. h13002048.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma , \ldots , \alpha _ { q } ) , \ldots ,$ ; confidence 0.348

77. f120150171.png ; $\| T \| < \mu ( A )$ ; confidence 0.348

78. d03025021.png ; $f ( x , u ] , \ldots , u _ { x } )$ ; confidence 0.348

79. a12020046.png ; $\hat { r }$ ; confidence 0.348

80. a110380105.png ; $x _ { 1 } , \ldots , x _ { x }$ ; confidence 0.348

81. d1301108.png ; $H = c \frac { \hbar } { i } \vec { \alpha } . \vec { \nabla } + \vec { \beta } m _ { 0 } c ^ { 2 }$ ; confidence 0.348

82. a01329042.png ; $n _ { 1 } , \ldots , n _ { k }$ ; confidence 0.348

83. c13021011.png ; $( a * b ) * ( c * d ) = ( a * c ) * ( b * d )$ ; confidence 0.348

84. a11016016.png ; $x ^ { 2 }$ ; confidence 0.348

85. c12026043.png ; $\| U ^ { x } - u ^ { n } \| \leq \| U ^ { 0 } - u ^ { 0 } \| + O ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.348

86. b13026048.png ; $F : \overline { U } \rightarrow R ^ { n }$ ; confidence 0.348

87. b12014024.png ; $S \in F _ { q }$ ; confidence 0.348

88. r1300406.png ; $t = 0$ ; confidence 0.347

89. c12031010.png ; $e ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ | I _ { d } ( f ) - Q _ { n } ( f ) | : f \in F _ { d } \}$ ; confidence 0.347

90. m1302006.png ; $H _ { f } = P ( d f ) \in X ( M , P )$ ; confidence 0.347

91. d120230127.png ; $R = \left( \begin{array} { l l } { R _ { 11 } } & { R _ { 12 } } \\ { R _ { 21 } } & { R _ { 22 } } \end{array} \right) , F = \left( \begin{array} { l l } { F _ { 1 } } & { 0 } \\ { F _ { 2 } } & { F _ { 3 } } \end{array} \right)$ ; confidence 0.347

92. h13007061.png ; $f \in R ^ { l }$ ; confidence 0.347

93. c0230307.png ; $\mathscr { H }$ ; confidence 0.347

94. i13004036.png ; $\operatorname { sup } _ { 0 < | y | < \pi } | \int _ { - \infty } ^ { \infty } \varphi ( x ) e ^ { - i y x } d x - \sum _ { - \infty } ^ { \infty } \varphi ( k ) e ^ { - i k x } | \leq C \| \varphi \| _ { B V }$ ; confidence 0.347

95. a01020036.png ; $M$ ; confidence 0.347

96. d12002097.png ; $a ^ { 1 } k$ ; confidence 0.347

97. n067520300.png ; $A _ { \alpha } \simeq K _ { \rho _ { 0 } }$ ; confidence 0.347

98. c12026081.png ; $\frac { U _ { h } ^ { n + 1 } - U _ { h } ^ { n } } { k } = \frac { 1 } { 2 } F _ { h } ( t _ { n } , U _ { h } ^ { n } ) + \frac { 1 } { 2 } F _ { h } ( t _ { n } + 1 , U _ { h } ^ { n + 1 } )$ ; confidence 0.347

99. a13029012.png ; $HF _ { * } ^ { inst } ( Y , P _ { Y } )$ ; confidence 0.347

100. f12021032.png ; $\mathfrak { c } _ { 0 } \equiv 1$ ; confidence 0.347

101. c120210147.png ; $\alpha _ { x } / \tau _ { x } = O ( 1 )$ ; confidence 0.347

102. d12023077.png ; $R ^ { - \# } = T R ^ { - 1 } I$ ; confidence 0.347

103. i13009047.png ; $E _ { 1 } ( k ) = \operatorname { rank } _ { Z p } E _ { 1 } ( k )$ ; confidence 0.346

104. b12052034.png ; $B _ { c }$ ; confidence 0.346

105. s13004041.png ; $X ^ { * }$ ; confidence 0.346

106. z130100111.png ; $\forall x ( ( \neg x = 0 ) \rightarrow \exists y ( y \in x / \backslash z ( z \in x \rightarrow \neg z \in y ) ) )$ ; confidence 0.346

107. a130050160.png ; $\sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n } = \prod _ { m = 1 } ^ { \infty } ( 1 - y ^ { m } ) ^ { - P ^ { \# } ( m ) }$ ; confidence 0.346

108. v13007024.png ; $\phi _ { int } = \phi _ { 0 } + \frac { \gamma \dot { b } ^ { 2 } \kappa } { 12 \mu }$ ; confidence 0.346

109. b1301504.png ; $\partial _ { t ^ { 2 } ( \Gamma , t ) } = ( 2 \pi i ) ^ { - 1 } PV \int _ { - \infty } ^ { \infty } \frac { d \Gamma ^ { \prime } } { z ( \Gamma , t ) - z ( \Gamma ^ { \prime } , t ) }$ ; confidence 0.346

110. h120020166.png ; $5 p$ ; confidence 0.346

111. y12002014.png ; $L ( A ) = \int _ { M } \{ F _ { A } \wedge * F _ { A } \}$ ; confidence 0.346

112. g04537029.png ; $z \in C ^ { x }$ ; confidence 0.346

113. a12015024.png ; $( ad X ) ( Y ) = [ X , Y ] , X , Y \in \mathfrak { g }$ ; confidence 0.346

114. n06663013.png ; $r _ { i } = r _ { i } ^ { * } + \alpha _ { i }$ ; confidence 0.346

115. s130510116.png ; $K = l$ ; confidence 0.346

116. b130200167.png ; $V ^ { \lambda } : = \{ v \in V : h , v = \lambda ( h ) v \}$ ; confidence 0.346

117. l057000151.png ; $\vdash ( \lambda x , x ) : ( \sigma \rightarrow \sigma )$ ; confidence 0.346

118. t12006089.png ; $z _ { j } + z$ ; confidence 0.345

119. t12019019.png ; $t ( r + 1 , r ) \leq \frac { \operatorname { ln } r } { 2 r } ( 1 + \circ ( 1 ) )$ ; confidence 0.345

120. s130510158.png ; $d _ { 011 } < < 2$ ; confidence 0.345

121. i120050102.png ; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n )$ ; confidence 0.345

122. c12030022.png ; $O _ { H }$ ; confidence 0.345

123. a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345

124. b110100347.png ; $x \in E$ ; confidence 0.345

125. s13011050.png ; $Z [ x _ { 1 } , \ldots , x _ { N } ]$ ; confidence 0.345

126. w1201906.png ; $\psi _ { W } ( x , p , t ) = \int _ { R ^ { 3 N } } e ^ { i p z / \hbar } \overline { \psi } ( x + \frac { z } { 2 } , t ) \psi ( x - \frac { z } { 2 } , t ) d z$ ; confidence 0.345

127. b13021015.png ; $f _ { b } = \sum _ { r \ni b } F _ { r }$ ; confidence 0.345

128. d130060102.png ; $m Y _ { 1 } , o b s ( \{ y _ { 1 } , 1 , y _ { 1 } , 3 , y _ { 1 } , s \} ) = 1$ ; confidence 0.345

129. c130070240.png ; $\operatorname { ord } _ { T } ( d \tau _ { i } / d \tau )$ ; confidence 0.345

130. b130200111.png ; $\alpha \in \mathfrak { g } ^ { n } _ { 1 } \alpha _ { 1 } + \ldots$ ; confidence 0.345

131. b13004035.png ; $W$ ; confidence 0.345

132. r130070102.png ; $f _ { N } \in H ^ { 0 }$ ; confidence 0.345

133. a01197024.png ; $a$ ; confidence 0.345

134. p1201305.png ; $a$ ; confidence 0.345

135. b1200502.png ; $B E$ ; confidence 0.345

136. e120240119.png ; $H ^ { 1 } ( \overline { Y _ { 1 } ( N ) } ; \operatorname { sym } ^ { k - 2 } R ^ { 1 } \overline { f } \cdot z _ { p } ) \otimes Q _ { p }$ ; confidence 0.344

137. b12022093.png ; $D _ { \xi } = ( 1 , v _ { 1 } , \dots , v _ { N } , | v | ^ { 2 } / 2 + I ^ { 2 } / 2 ) R _ { + }$ ; confidence 0.344

138. l12009097.png ; $[ . . ]$ ; confidence 0.344

139. p13009019.png ; $f ( x ) = \int _ { \partial \xi ( x _ { 0 } , r ) } P ( x , \xi ) f ( \xi ) d \sigma ( \xi )$ ; confidence 0.344

140. a130050215.png ; $\sum _ { n \leq x } S ( n ) = A _ { 2 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty$ ; confidence 0.344

141. d110020103.png ; $\mathfrak { c } _ { 1 } , \ldots , \mathfrak { c } _ { \mathfrak { N } } \in C$ ; confidence 0.344

142. r11011044.png ; $\Rightarrow w ( x _ { 1 } , \dots , x _ { x } ) = e$ ; confidence 0.344

143. e12002037.png ; $t ( X ) \leq 1$ ; confidence 0.344

144. a13004015.png ; $H _ { D }$ ; confidence 0.344

145. b015350310.png ; $x \in H$ ; confidence 0.344

146. b120130102.png ; $p$ ; confidence 0.344

147. w120030101.png ; $\| ( x _ { X } + x ) / 2 \| \rightarrow \| x \|$ ; confidence 0.344

148. w12011021.png ; $= | t | ^ { - n } \int \int e ^ { - 2 i \pi t ^ { - 1 } y \cdot \eta } _ { \alpha ( x + y , \xi + \eta ) d y d \eta }$ ; confidence 0.344

149. c1301408.png ; $A ^ { * } = ( a _ { i , j } ) ^ { * } = ( \overline { a _ { j , i } } )$ ; confidence 0.344

150. b12002019.png ; $\frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \| \alpha _ { n } + \beta _ { n } \| \stackrel { d } { \rightarrow } \| B \| ^ { 1 / 2 }$ ; confidence 0.344

151. b13006013.png ; $| x | _ { 2 } = ( \sum _ { i } | x _ { i } | ^ { 2 } ) ^ { 1 / 2 } , \| x \| _ { \infty } = \operatorname { max } _ { i } | x _ { i } |$ ; confidence 0.344

152. b12042086.png ; $Z / n Z$ ; confidence 0.344

153. m12003097.png ; $e _ { 0 } = y _ { 0 } - \vec { x } _ { 0 } ^ { \star } \vec { \theta }$ ; confidence 0.343

154. k05584018.png ; $( \kappa , - [ , ] )$ ; confidence 0.343

155. t130130103.png ; $\operatorname { Ext } _ { \Delta } ^ { i } ( T , T ) = 0$ ; confidence 0.343

156. a010210142.png ; $w$ ; confidence 0.343

157. b1201609.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } p _ { i k } , j _ { i } x _ { k } , \quad x _ { i } \geq 0 , \sum _ { i } x _ { i } = 1$ ; confidence 0.343

158. w12020022.png ; $\| p$ ; confidence 0.343

159. l0570206.png ; $( F _ { n } ) _ { n \in N }$ ; confidence 0.343

160. e120190179.png ; $h _ { 1 } ^ { \prime }$ ; confidence 0.343

161. b12022016.png ; $f ( v ) = \frac { \rho } { ( 2 \pi T ) ^ { N / 2 } } e ^ { - p - u ^ { 2 } / 2 T }$ ; confidence 0.343

162. j13002052.png ; $9970$ ; confidence 0.343

163. h046010138.png ; $v \geq 5$ ; confidence 0.343

164. s1305905.png ; $\{ c _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.343

165. m12009063.png ; $\| P ( D ) ( \phi ) \| _ { 2 } \geq G \| \phi \| _ { 2 } ( L ^ { 2 } \text { norms } )$ ; confidence 0.343

166. j13007047.png ; $\{ F ( z _ { N } ) \}$ ; confidence 0.343

167. h13006050.png ; $\alpha \in \hat { D }$ ; confidence 0.342

168. p12013018.png ; $\| \lambda \theta ^ { N } \| \rightarrow 0$ ; confidence 0.342

169. b12043069.png ; $\Psi ( y \bigotimes x ) = q x \otimes y + ( q ^ { 2 } - 1 ) y \otimes x$ ; confidence 0.342

170. j12002071.png ; $t < T$ ; confidence 0.342

171. c0221108.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ X ^ { 2 } \leq x | H _ { 0 } \} = P \{ \chi _ { k - 1 } ^ { 2 } \leq x \}$ ; confidence 0.342

172. b12016043.png ; $\{ f _ { i } \} _ { 1 } ^ { n _ { 1 } }$ ; confidence 0.342

173. a13026029.png ; $11$ ; confidence 0.342

174. b13020050.png ; $a _ { i i } = 0$ ; confidence 0.342

175. d12012035.png ; $a : g \rightarrow g ^ { \prime }$ ; confidence 0.342

176. m12015014.png ; $R ^ { p \times N }$ ; confidence 0.342

177. k055840222.png ; $A _ { L }$ ; confidence 0.342

178. s13002032.png ; $d \gamma = | \langle v , N _ { X } \rangle | d v d x$ ; confidence 0.342

179. a1302206.png ; $0 \rightarrow A \stackrel { f } { \rightarrow } B \stackrel { g } { \rightarrow } C \rightarrow 0$ ; confidence 0.342

180. s120340189.png ; $\overline { \Sigma }$ ; confidence 0.342

181. e120230162.png ; $= \int _ { M } \sigma ^ { k + 1 } ^ { * } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ]$ ; confidence 0.342

182. d12012053.png ; $= \operatorname { dom } a$ ; confidence 0.342

183. a13022024.png ; $g \tilde { h } = h$ ; confidence 0.342

184. a13008072.png ; $t _ { N } ( x ) = \frac { c _ { N } } { s } ( 1 + \frac { ( x - m ) ^ { 2 } } { s ^ { 2 } n } ) ^ { - ( n + 1 ) / 2 }$ ; confidence 0.342

185. a012460168.png ; $x ^ { 2 }$ ; confidence 0.342

186. c12008018.png ; $\sum _ { i = 0 } ^ { m } a _ { m - i } [ A _ { 1 } ^ { m - i } , A _ { 1 } ^ { n - i - 1 } A _ { 2 } ] = 0$ ; confidence 0.342

187. e120230105.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { R } }$ ; confidence 0.342

188. w1200508.png ; $C ^ { \infty } ( R ^ { m } , R )$ ; confidence 0.341

189. f120150166.png ; $\mu ( A ) = \operatorname { inf } \{ \| 7 \| : \alpha ( A - T ) = \infty \}$ ; confidence 0.341

190. l11001025.png ; $\{ P , + , , \vee , \wedge \}$ ; confidence 0.341

191. b12032096.png ; $a _ { m } = m ^ { 1 / p }$ ; confidence 0.341

192. b13020010.png ; $D A$ ; confidence 0.341

193. t120200144.png ; $\frac { k = m + 1 , \ldots , m + | g ( k ) | } { \sum _ { j = 1 } ^ { N } | b _ { j } z _ { j } ^ { k } | } \geq \frac { 1 } { n } ( \frac { \delta } { 2 } ) ^ { n - 1 }$ ; confidence 0.341

194. l12005024.png ; $\frac { 1 } { 2 \sqrt { 2 \pi } } \int _ { 0 } ^ { \infty } \int _ { 0 } ^ { \infty } \operatorname { exp } ( - \frac { 1 } { 2 } ( \frac { x u } { v } + \frac { x v } { u } + \frac { u v } { x } ) ) \times \times ( \frac { 1 } { x } + \frac { 1 } { u } + \frac { 1 } { v } ) f ( u ) g ( v ) d u d v$ ; confidence 0.341

195. b1200808.png ; $E _ { WOr } ( P , m ) = \operatorname { sup } _ { p \in P } | \epsilon ( p , m ) |$ ; confidence 0.341

196. i13008026.png ; $L _ { 2 } ^ { 11 }$ ; confidence 0.341

197. l120120160.png ; $M _ { p }$ ; confidence 0.341

198. l12007065.png ; $v _ { t } / r ^ { t }$ ; confidence 0.341

199. e13007012.png ; $n \in I$ ; confidence 0.341

200. b13001042.png ; $V ^ { * } = V \cup V _ { 1 } \cup \ldots \cup V _ { t }$ ; confidence 0.340

201. i13009070.png ; $P ( T ) = T ^ { x } + a _ { x } - 1 T ^ { x - 1 } + \ldots + a _ { 0 }$ ; confidence 0.340

202. s0911904.png ; $V = V _ { \square } \oplus V _ { T }$ ; confidence 0.340

203. w12019030.png ; $= \sum _ { k , l } A _ { k l } \int _ { R ^ { 3 N } } e ^ { i p z / \hbar } u _ { l k } ( x - \frac { z } { 2 } ) \overline { u } / ( x + \frac { z } { 2 } ) d z$ ; confidence 0.340

204. m130110113.png ; $( \frac { \partial \phi } { \partial t } ) | _ { x _ { k } ^ { 0 } } = \frac { D \phi } { D t } , ( \frac { \partial \phi } { \partial t } ) | _ { x _ { i } } = \frac { \partial \phi } { \partial t } , ( \frac { \partial x _ { i } } { \partial t } ) | _ { x _ { k } ^ { 0 } } = v _ { i }$ ; confidence 0.340

205. w13006038.png ; $T g , x$ ; confidence 0.340

206. c1203008.png ; $S _ { i } ^ { * } S _ { j } = 0 , i \neq j$ ; confidence 0.340

207. p13014026.png ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } \rho ( \alpha , p ) } { \alpha x - p } d p d \alpha$ ; confidence 0.340

208. a0106407.png ; $> r$ ; confidence 0.340

209. a11022031.png ; $\{ e _ { 1 } , \ldots , e _ { x } \}$ ; confidence 0.340

210. c130160149.png ; $P H$ ; confidence 0.340

211. a01211032.png ; $T _ { i }$ ; confidence 0.340

212. a130240488.png ; $( \beta _ { t 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339

213. c023150276.png ; $p ^ { \prime }$ ; confidence 0.339

214. c13019017.png ; $s ( N \backslash L )$ ; confidence 0.339

215. s13064025.png ; $T ( a ) = \operatorname { Ran } ( \alpha ) \cup \{ z \notin \operatorname { Ran } ( \alpha ) : \text { wind } ( \alpha - z ) \neq 0 \}$ ; confidence 0.339

216. s12023067.png ; $K _ { 2 } ( m \times m ) = I _ { m }$ ; confidence 0.339

217. b13017020.png ; $d S _ { t } = \mu S _ { t } d t + \sigma S _ { t } d w _ { t }$ ; confidence 0.339

218. b110220144.png ; $\dot { i } = 0$ ; confidence 0.339

219. c11033012.png ; $p$ ; confidence 0.339

220. h13009051.png ; $G ^ { * * }$ ; confidence 0.339

221. l05763058.png ; $\alpha \in P$ ; confidence 0.339

222. w13009073.png ; $H _ { k } ( x ) = ( - 1 ) ^ { n } e ^ { x ^ { 2 } / 2 } D _ { x } ^ { k } e ^ { - x ^ { 2 } / 2 }$ ; confidence 0.339

223. a12005064.png ; $A ( 0 ) uv + f ( 0 ) \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.339

224. c13010017.png ; $\{ A ; \} _ { i = 1 } ^ { n } \subset A$ ; confidence 0.339

225. v120020129.png ; $F * = q * p * ^ { - 1 }$ ; confidence 0.339

226. s13038024.png ; $\operatorname { ln } t _ { \tau } A$ ; confidence 0.339

227. k1201301.png ; $\int _ { x } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 } i _ { ( n + 1 ) - 1 } [ f ] =$ ; confidence 0.339

228. d12012051.png ; $\chi _ { j + 1 } ^ { \prime } = \operatorname { codom } \alpha _ { j } ^ { \prime }$ ; confidence 0.339

229. b120040182.png ; $\Sigma _ { n = 1 } ^ { \infty } | x ^ { * } ( x _ { n } ) | < \infty$ ; confidence 0.339

230. b12036022.png ; $P z$ ; confidence 0.338

231. b110380115.png ; $8$ ; confidence 0.338

232. f120110215.png ; $| \operatorname { Im } \zeta | / | \operatorname { Re } \zeta | \rightarrow 0$ ; confidence 0.338

233. d13006045.png ; $( x _ { j _ { 1 } } , \dots , x _ { j _ { k } } )$ ; confidence 0.338

234. f13024022.png ; $\langle x y z \} : = \{ y , z \} x$ ; confidence 0.338

235. f12001022.png ; $\hat { R } ^ { 0 } ( \pi _ { 1 } ( X , * ) )$ ; confidence 0.338

236. w13008071.png ; $\mathfrak { g } = \text { Lie } ( G )$ ; confidence 0.338

237. a13027011.png ; $Q _ { n } : Y \rightarrow X _ { r }$ ; confidence 0.338

238. t12013020.png ; $= ( \frac { e ^ { \sum _ { 1 } ^ { \infty } x _ { i } ^ { i } z ^ { i } } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) z ^ { n } } { \tau _ { n } ( x , y ) } | _ { n \in Z } , \Psi _ { 2 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } y _ { i } z ^ { - i } } S _ { 2 } \chi ( z ) =$ ; confidence 0.338

239. m13025056.png ; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 } \subset D ( R ^ { x } )$ ; confidence 0.338

240. e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338

241. s13064046.png ; $\alpha ( e ^ { i \theta } ) = b ( e ^ { i \theta } ) \prod _ { r = 1 } ^ { R } \omega _ { \alpha _ { r } , \beta _ { r } } ( e ^ { i \langle \theta - \theta _ { r } \rangle } )$ ; confidence 0.338

242. z13011040.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \approx \Delta \frac { 1 } { x } = \frac { 1 } { x ( x + 1 ) } , x = 1,2 , \dots$ ; confidence 0.338

243. a130040515.png ; $\mathfrak { A } = \langle A , C \rangle$ ; confidence 0.337

244. a0127908.png ; $98$ ; confidence 0.337

245. b11065036.png ; $P \in P$ ; confidence 0.337

246. s12017054.png ; $y > z$ ; confidence 0.337

247. a12020049.png ; $\mathfrak { p } _ { i } ( t ) = \prod _ { m = 1 , m \neq i } ^ { n } \frac { t - t _ { m } } { t _ { i } - t _ { m } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.337

248. a120260123.png ; $y _ { i }$ ; confidence 0.337

249. l12012010.png ; $1.1 p$ ; confidence 0.337

250. w1201809.png ; $V ( A )$ ; confidence 0.337

251. s13065010.png ; $\rho _ { \aleph } + 1 = \Phi _ { N } + 1 ( 0 )$ ; confidence 0.337

252. a12017020.png ; $p ( \alpha , t ) = \operatorname { coo } ^ { \lambda ^ { * } ( t - \alpha ) } \Pi ( \alpha ) ( 1 + \Omega ( t - \alpha ) )$ ; confidence 0.337

253. b12043014.png ; $a , b \in B$ ; confidence 0.337

254. l057000191.png ; $( \lambda x , f ( x ) ) \cdot e = f ( e )$ ; confidence 0.337

255. l13006062.png ; $m 0 = n , m 1 = a$ ; confidence 0.337

256. d120230171.png ; $\left( \begin{array} { c } { 0 } \\ { G _ { i + 1 } } \end{array} \right) = Z _ { i } G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 1 } & { 0 } \\ { 0 } & { 0 } \end{array} \right) + G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 0 } & { 0 } \\ { 0 } & { I _ { p + q - 1 } } \end{array} \right)$ ; confidence 0.337

257. w12009010.png ; $G = GL _ { n } ( K )$ ; confidence 0.337

258. m130230150.png ; $( ( X _ { n } + 1 , B _ { n + 1 } ) , f _ { n + 1 } ) = ( ( X _ { n } ^ { + } , ( \phi _ { * } ^ { + } ) ^ { - 1 } \phi _ { * } B _ { n } ) , f _ { n } \circ \phi ^ { - 1 } \circ \phi ^ { + } )$ ; confidence 0.337

259. s12015080.png ; $G$ ; confidence 0.337

260. b120040159.png ; $| x | | y | | _ { X ^ { \prime } } \leq ( 1 + \epsilon ) \| f \| _ { L _ { 1 } }$ ; confidence 0.337

261. c12026060.png ; $( L _ { h k } U ) _ { j } ^ { n } \equiv 0$ ; confidence 0.337

262. w12020016.png ; $R [ K _ { X } ( x _ { \nu } , . ) ] = 0 , \quad \nu = 2 , \dots , n - 1$ ; confidence 0.336

263. b12013094.png ; $\int _ { D } z ^ { n } | \varphi ( z ) | ^ { p } d A ( z ) = 0$ ; confidence 0.336

264. s12034055.png ; $\mathfrak { c } _ { 1 } ( A )$ ; confidence 0.336

265. b12022038.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = \frac { M _ { f } - f } { \varepsilon }$ ; confidence 0.336

266. f130290147.png ; $L = M , \phi ^ { 0 p } = id _ { L }$ ; confidence 0.336

267. j13002063.png ; $I _ { O }$ ; confidence 0.336

268. b13007063.png ; $\alpha \mapsto \alpha \dot { b }$ ; confidence 0.336

269. a13012033.png ; $( q , q ^ { \alpha - 2 } )$ ; confidence 0.336

270. d12025012.png ; $X \rightarrow x - \phi ( x )$ ; confidence 0.336

271. b120430126.png ; $\Delta u ^ { i } \square j = u ^ { i } \square _ { \alpha } \otimes u ^ { \alpha } \square j , \varepsilon u ^ { i } \square j = \delta ^ { i } \square$ ; confidence 0.336

272. b130290104.png ; $R ( I ) = \oplus _ { n } \geq 0 I ^ { n }$ ; confidence 0.336

273. b12016060.png ; $x _ { i }$ ; confidence 0.336

274. l12004017.png ; $u _ { i } ^ { n }$ ; confidence 0.336

275. m13025095.png ; $v \in L ^ { \infty } ( R ^ { n } )$ ; confidence 0.336

276. l11004012.png ; $x _ { 1 } , \dots , x _ { n } \in G$ ; confidence 0.336

277. q12003028.png ; $X ( f g ) = \mu ( \Delta X . ( f \otimes g ) )$ ; confidence 0.335

278. w12011017.png ; $\tilde { u } = u$ ; confidence 0.335

279. m12027053.png ; $Q _ { j } ( z ) + P _ { j } ( z ) = 0 , \quad j = 1 , \dots , n$ ; confidence 0.335

280. e1202701.png ; $x _ { 1 } < \ldots < x _ { m }$ ; confidence 0.335

281. m12016027.png ; $X = \left( \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right) , M = \left( \begin{array} { c } { M _ { 1 } } \\ { M _ { 2 } } \end{array} \right) , \Sigma = \left( \begin{array} { l l } { \Sigma _ { 11 } } & { \Sigma _ { 12 } } \\ { \Sigma _ { 21 } } & { \Sigma _ { 22 } } \end{array} \right)$ ; confidence 0.335

282. a130040459.png ; $\operatorname { Mod } ^ { * } L D ( K ) = ( SPP _ { U } K ) ^ { * } L$ ; confidence 0.335

283. t13013070.png ; $( T , ) : D ^ { b } ( \Lambda ) \rightarrow D ^ { b } ( \Gamma )$ ; confidence 0.335

284. a120160144.png ; $\overline { Q _ { i } } = n _ { i } q _ { i }$ ; confidence 0.335

285. s1305101.png ; $g : V \rightarrow Z ^ { 0 }$ ; confidence 0.335

286. g13007029.png ; $\alpha \in \varphi ( A )$ ; confidence 0.335

287. t13009018.png ; $\pi Y ( \alpha ) \in T _ { X }$ ; confidence 0.335

288. e03500093.png ; $H ( U )$ ; confidence 0.335

289. c13004025.png ; $n \in N : = \{ 1,2 , \ldots \} , z \in C \backslash Z _ { 0 } ^ { - }$ ; confidence 0.335

290. s1203502.png ; $= b _ { 1 } u ( t - 1 ) + \ldots + b _ { m } u ( t - m ) + e ( t )$ ; confidence 0.335

291. a130040638.png ; $\langle N e _ { S _ { P } } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } \rangle$ ; confidence 0.335

292. d120020216.png ; $\dot { k } = k + 1$ ; confidence 0.335

293. m12012029.png ; $0 \neq I < R$ ; confidence 0.335

294. s120320123.png ; $\operatorname { ev } _ { X } ( 1 \otimes \xi _ { i } ) = 0$ ; confidence 0.334

295. i13005058.png ; $F + ( x ) = \sum _ { j = 1 } ^ { J } ( m _ { j } ^ { + } ) ^ { 2 } e ^ { - k _ { j } x } + \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( k ) e ^ { i k x } d k$ ; confidence 0.334

296. w1300505.png ; $W ( \mathfrak { g } ) = \bigwedge \mathfrak { g } ^ { * } \otimes S \mathfrak { g } ^ { * }$ ; confidence 0.334

297. w13010010.png ; $B _ { d } ( x )$ ; confidence 0.334

298. t130050180.png ; $\sigma _ { T } ( ( L _ { A } , R _ { B } ) , L ( H ) ) = \sigma _ { T } ( A , H ) \times \sigma _ { T } ( B , H )$ ; confidence 0.334

299. d12012049.png ; $\alpha ^ { \prime } = ( \alpha ^ { \prime } 1 , \ldots , \alpha ^ { \prime m } )$ ; confidence 0.334

300. a130240184.png ; $\eta _ { i } - \eta _ { s }$ ; confidence 0.334

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/66. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/66&oldid=44476