Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/50"
(AUTOMATIC EDIT of page 50 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 50 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002031.png ; $f , g \in C [ R ]$ ; confidence 0.643 |
| − | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200303.png ; $o : 1 \rightarrow N$ ; confidence 0.643 |
| − | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005017.png ; $r ( K _ { X } + B )$ ; confidence 0.643 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015160/b0151607.png ; $1$ ; confidence 0.643 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080180.png ; $\vec { F B }$ ; confidence 0.643 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180469.png ; $\pi _ { 0 } : N _ { 0 } \rightarrow N$ ; confidence 0.643 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215409.png ; $x \in A ^ { + }$ ; confidence 0.643 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021023.png ; $\{ A _ { i } \} _ { i = 1 } ^ { k }$ ; confidence 0.642 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l12020010.png ; $R P ^ { n } \geq n + 1$ ; confidence 0.642 |
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200704.png ; $\sigma _ { 1 } , \ldots , \sigma _ { t }$ ; confidence 0.642 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d1201606.png ; $C ( S \times T )$ ; confidence 0.642 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200806.png ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \dots p _ { s } ^ { z _ { s } }$ ; confidence 0.642 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025030.png ; $\sqrt { 1 - x ^ { 2 } } w ( x ) > 0$ ; confidence 0.642 |
| − | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807042.png ; $S = \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } ( X _ { i } - X ) ( X _ { i } - X ) ^ { \prime }$ ; confidence 0.642 |
| − | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738052.png ; $\phi j$ ; confidence 0.642 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026030.png ; $\langle [ A ] , \phi \} = \int _ { \operatorname { reg } A } \phi$ ; confidence 0.642 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024048.png ; $s \times p$ ; confidence 0.642 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058065.png ; $12$ ; confidence 0.642 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011090.png ; $F _ { \sigma } \in \tilde { O } ( ( \Omega + \Gamma _ { \sigma } ) \cap U )$ ; confidence 0.642 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500038.png ; $N _ { \epsilon } ( C )$ ; confidence 0.642 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002028.png ; $X \times Y$ ; confidence 0.642 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029013.png ; $Q \in [ \alpha , b ]$ ; confidence 0.642 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300601.png ; $f _ { 1 } : = x _ { 1 } ^ { d }$ ; confidence 0.642 |
| − | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022037.png ; $t \searrow 0$ ; confidence 0.641 |
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006026.png ; $E ^ { TF } ( N ) = \operatorname { inf } \{ E ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \}$ ; confidence 0.641 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010058.png ; $L _ { C } ^ { p } ( G )$ ; confidence 0.641 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408036.png ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; A , B ) , * )$ ; confidence 0.641 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021045.png ; $p \subset a$ ; confidence 0.641 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566019.png ; $h = 1$ ; confidence 0.641 |
| − | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c12005017.png ; $f \rightarrow \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } \operatorname { Re } \frac { e ^ { i t } + z } { e ^ { t t } - z } f ( e ^ { i t } ) d t$ ; confidence 0.641 |
| − | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001056.png ; $e \leq x$ ; confidence 0.641 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570009.png ; $x \in \Lambda$ ; confidence 0.641 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002029.png ; $\| u f \| \leq \| f \| / c$ ; confidence 0.641 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023089.png ; $E ^ { k } = M \times F \times F ^ { ( 1 ) } \times \ldots F ^ { ( k ) }$ ; confidence 0.641 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032042.png ; $E _ { \theta } ( N ) = \frac { P _ { \theta } ( S _ { N } = K ) K - P _ { \theta } ( S _ { N } = - J ) J } { 2 \theta - 1 }$ ; confidence 0.641 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906703.png ; $U : C \rightarrow Set$ ; confidence 0.641 |
| − | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007034.png ; $s = 1 + p _ { 1 } / r + \ldots + p _ { 1 } \ldots p _ { k - 1 } / r ^ { k - 1 }$ ; confidence 0.641 |
| − | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020100.png ; $y _ { 0 } = g ( x _ { 0 } )$ ; confidence 0.641 |
| − | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019048.png ; $A = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.641 |
| − | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170281.png ; $d _ { 2 } ( e _ { 2 } ^ { j } )$ ; confidence 0.640 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130050/m1300501.png ; $a \leftrightarrow b a b ^ { - 1 }$ ; confidence 0.640 |
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057069.png ; $\phi _ { p }$ ; confidence 0.640 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004047.png ; $( R _ { + } \backslash \{ 0 \} , x , \leq )$ ; confidence 0.640 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180277.png ; $\in \otimes \square ^ { p + q + 1 } \varepsilon$ ; confidence 0.640 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002064.png ; $R \subseteq A ^ { x }$ ; confidence 0.640 |
| − | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015037.png ; $E _ { P } ( d _ { 0 } ) = 0$ ; confidence 0.640 |
| − | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010027.png ; $( C ) \int _ { A } f d m = ( C ) \int f \cdot \chi _ { A } d m$ ; confidence 0.640 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009020.png ; $0 < t < \infty$ ; confidence 0.640 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017037.png ; $\hat { B } ^ { k }$ ; confidence 0.640 |
| − | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303205.png ; $E _ { \theta } ( X _ { i } ) = P _ { \theta } ( X _ { i } = 1 ) = \theta = 1 - P _ { \theta } ( X _ { i } = 0 )$ ; confidence 0.640 |
| − | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010015.png ; $f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$ ; confidence 0.640 |
| − | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004048.png ; $( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) )$ ; confidence 0.640 |
| − | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r1300508.png ; $\alpha , b \in \Omega$ ; confidence 0.640 |
| − | 54. https://www.encyclopediaofmath.org/legacyimages/l/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013020.png ; $x \in Z$ ; confidence 0.640 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023062.png ; $f _ { t , s }$ ; confidence 0.640 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001030.png ; $R = \sum _ { s = 1 } ^ { n } a _ { s } \otimes b _ { s } \in A \otimes _ { k } A$ ; confidence 0.640 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023016.png ; $\overline { m } = \{ m _ { x } \} _ { x = 0 } ^ { \infty }$ ; confidence 0.639 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s120200101.png ; $S ^ { \lambda }$ ; confidence 0.639 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016023.png ; $S A T$ ; confidence 0.639 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034016.png ; $K$ ; confidence 0.639 |
| − | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040338.png ; $\lambda \in \Delta$ ; confidence 0.639 |
| − | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020064.png ; $\pi \in S _ { y }$ ; confidence 0.639 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840149.png ; $T + T = I = T T +$ ; confidence 0.639 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009011.png ; $U _ { n + 1 } ( x ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } , n = 0,1$ ; confidence 0.639 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009062.png ; $\operatorname { Re } h ( z ) > 0$ ; confidence 0.639 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008037.png ; $\langle A \rangle _ { T } = Z ^ { - 1 } \operatorname { Tr } [ \operatorname { exp } ( - \frac { H } { k _ { B } T } ) A ]$ ; confidence 0.639 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m0620002.png ; $( X _ { n } ) _ { n \in Z }$ ; confidence 0.639 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024027.png ; $Z ( C )$ ; confidence 0.639 |
| − | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002023.png ; $f _ { 1 } , \ldots , f _ { d }$ ; confidence 0.639 |
| − | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005078.png ; $V _ { ( n ) } < \infty$ ; confidence 0.639 |
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024018.png ; $Z ]$ ; confidence 0.638 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440129.png ; $( b )$ ; confidence 0.638 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029036.png ; $\operatorname { gcd } ( p _ { 1 } \ldots p _ { k } , q ) = 1$ ; confidence 0.638 |
| − | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020178.png ; $U _ { t } ^ { j } = u _ { j } ( B _ { \operatorname { min } } ( t , \tau ) )$ ; confidence 0.638 |
| − | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011019.png ; $Y ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.638 |
| − | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021070.png ; $\{ 0 , \pm x _ { 1 } , \ldots , \pm x _ { k } \}$ ; confidence 0.638 |
| − | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009056.png ; $f _ { n } \in H ^ { \otimes n }$ ; confidence 0.638 |
| − | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014092.png ; $K Q$ ; confidence 0.638 |
| − | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017041.png ; $H _ { Z } ( t )$ ; confidence 0.638 |
| − | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007014.png ; $v ( x , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k ) \frac { e ^ { i k \gamma } } { r } + o ( \frac { 1 } { r } )$ ; confidence 0.638 |
| − | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020046.png ; $k S _ { y }$ ; confidence 0.638 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013050/a01305019.png ; $j = 1 , \ldots , n$ ; confidence 0.638 |
| − | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020032.png ; $\sum _ { \nu = 1 } ^ { x } \alpha _ { \nu } \leq 2$ ; confidence 0.637 |
| − | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021043.png ; $c j ( \lambda )$ ; confidence 0.637 |
| − | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008024.png ; $S = \{ p _ { 1 } , \dots , p _ { s } \} \cup \{ p :$ ; confidence 0.637 |
| − | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m1202707.png ; $w = ( w _ { 1 } , \dots , w _ { x } )$ ; confidence 0.637 |
| − | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029082.png ; $\sum _ { n = 1 } ^ { \infty } y _ { n }$ ; confidence 0.637 |
| − | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028018.png ; $p ( X ) \approx \overline { E } \square ^ { q } ( S ^ { n } \backslash X ) , p + q = n - 1$ ; confidence 0.637 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110148.png ; $N ( s )$ ; confidence 0.637 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004017.png ; $X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } )$ ; confidence 0.637 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230173.png ; $G _ { i } + 1$ ; confidence 0.637 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008056.png ; $q 2 ( x )$ ; confidence 0.637 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020026.png ; $\operatorname { ker } ( \gamma \circ \alpha ^ { \prime } ) \subset \mathfrak { g }$ ; confidence 0.637 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001045.png ; $d \circ e = f$ ; confidence 0.637 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100206.png ; $t$ ; confidence 0.637 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006023.png ; $z _ { i } = 1 , \dots , p - 1$ ; confidence 0.637 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057710/l05771014.png ; $e _ { 1 } , \dots , e _ { s }$ ; confidence 0.637 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200132.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq$ ; confidence 0.637 |
| − | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025063.png ; $7 + 2$ ; confidence 0.637 |
| − | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006050.png ; $h ^ { i } ( K _ { X } + j L - \sum _ { k = 1 } ^ { r } [ \frac { j \alpha _ { k } } { N } ] D _ { k } ) = 0$ ; confidence 0.637 |
| − | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007028.png ; $\alpha , b \in A _ { k }$ ; confidence 0.636 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002022.png ; $S _ { k } = \left( \begin{array} { c } { n } \\ { k } \end{array} \right) \frac { ( n - k ) ! } { n ! }$ ; confidence 0.636 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020084.png ; $\alpha \in Z \alpha _ { 1 } + Z \alpha _ { 2 } +$ ; confidence 0.636 |
| − | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037074.png ; $C _ { B _ { 2 } } ( L _ { n } )$ ; confidence 0.636 |
| − | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005016.png ; $\beta ( \phi , \rho ) ( t ) = \int _ { N } u _ { \Phi } \rho$ ; confidence 0.636 |
| − | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007014.png ; $u ^ { x } = 1$ ; confidence 0.636 |
| − | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023029.png ; $\nabla _ { Z } R$ ; confidence 0.636 |
| − | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120108.png ; $V _ { \text { simp } } ( K _ { p } )$ ; confidence 0.636 |
| − | 109. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022048.png ; $Z ( g ^ { \alpha } h ^ { c } , g ^ { b } h ^ { d } ; z ) = \alpha Z ( g h ; \frac { a z + b } { c z + d } )$ ; confidence 0.636 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170110.png ; $M _ { z }$ ; confidence 0.636 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202109.png ; $a ^ { [ N ] } ( z ) \equiv 1$ ; confidence 0.636 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009016.png ; $v \notin [ 0,1$ ; confidence 0.636 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032077.png ; $\alpha _ { 2 } = 1$ ; confidence 0.636 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960301.png ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = 0 , \quad \mu = \text { const } > 0 , \quad \dot { x } ( t ) \equiv \frac { d x } { d t }$ ; confidence 0.636 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012078.png ; $Z \sim N _ { p } ( 0 , l )$ ; confidence 0.636 |
| − | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032068.png ; $x , y , z \in E _ { + }$ ; confidence 0.636 |
| − | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028070.png ; $L _ { w } ( X , Y )$ ; confidence 0.636 |
| − | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002019.png ; $D _ { 1 }$ ; confidence 0.636 |
| − | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008036.png ; $c - 2 \operatorname { deg } l$ ; confidence 0.636 |
| − | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040176.png ; $i = 1 , \ldots , 4$ ; confidence 0.636 |
| − | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001021.png ; $S _ { f } ( a _ { 0 } )$ ; confidence 0.636 |
| − | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016023.png ; $f | _ { K }$ ; confidence 0.635 |
| − | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002047.png ; $( \alpha _ { 1 } \cup \gamma , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.635 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008070.png ; $E [ C ]$ ; confidence 0.635 |
| − | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017083.png ; $C _ { 1 }$ ; confidence 0.635 |
| − | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120190.png ; $V ( M )$ ; confidence 0.635 |
| − | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020036.png ; $\left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq$ ; confidence 0.635 |
| − | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013260/a01326011.png ; $E _ { 0 }$ ; confidence 0.635 |
| − | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028021.png ; $A x$ ; confidence 0.635 |
| − | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023099.png ; $X = G \wedge H$ ; confidence 0.635 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150086.png ; $X \times X$ ; confidence 0.635 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018029.png ; $A ( D )$ ; confidence 0.635 |
| − | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010041.png ; $f ^ { em } = \operatorname { div } t ^ { em } - \frac { \partial G ^ { em } } { \partial t }$ ; confidence 0.635 |
| − | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220053.png ; $z \in D$ ; confidence 0.635 |
| − | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550709.png ; $H ^ { 2 r + 1 } ( M , C )$ ; confidence 0.635 |
| − | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002019.png ; $\overline { \delta }$ ; confidence 0.635 |
| − | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008076.png ; $P \equiv \left( \begin{array} { c c } { \operatorname { exp } ( \frac { J + H } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } \\ { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { J - H } { k _ { B } T } ) } \end{array} \right)$ ; confidence 0.635 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780257.png ; $V _ { 0 }$ ; confidence 0.635 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210127.png ; $\int _ { A } \operatorname { exp } ( h ^ { \prime } \Delta _ { N } ^ { * } ( \theta ) ) d P _ { n , \theta }$ ; confidence 0.635 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001048.png ; $T ^ { k }$ ; confidence 0.635 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040101.png ; $P _ { K } ( 1,0 ) = \alpha _ { 2 }$ ; confidence 0.635 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040321.png ; $D$ ; confidence 0.635 |
| − | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200211.png ; $\operatorname { max } _ { k = 1 , \ldots , n } ( \frac { 1 } { n } | s _ { k } | ) ^ { 1 / k } > \frac { 1 } { 5 } > \frac { 1 } { 2 + \sqrt { 8 } }$ ; confidence 0.635 |
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100128.png ; $\rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }$ ; confidence 0.635 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015091.png ; $P _ { 0 } \in P$ ; confidence 0.635 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300307.png ; $M _ { n } = \{ P ( X , Y ) = \sum _ { \nu = 0 } ^ { n } a _ { \nu } X ^ { \nu } Y ^ { n - \nu } : a _ { \nu } \in Q \}$ ; confidence 0.635 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010019.png ; $\sigma _ { k - 1 } ( n ) = \sum _ { 0 < d | n } d ^ { k - 1 }$ ; confidence 0.635 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064072.png ; $\operatorname { lim } _ { \tau \rightarrow \infty } \frac { \operatorname { det } ( I + W _ { \tau } ( k ) ) } { G ( a ) ^ { \tau } } = E ( a )$ ; confidence 0.634 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240187.png ; $\| y - X b \| ^ { 2 }$ ; confidence 0.634 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007072.png ; $\operatorname { cap } ( E ) = \operatorname { exp } ( - \operatorname { sup } _ { z \in C ^ { n } } \rho _ { L _ { E } } ( z ) )$ ; confidence 0.634 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111013.png ; $H ^ { n + 1 } ( X , A ; G ) \rightarrow$ ; confidence 0.634 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006080.png ; $E ^ { TF } ( N )$ ; confidence 0.634 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015067.png ; $\frac { 1 } { \beta _ { p } ( a , b ) } | V | ^ { \alpha - ( p + 1 ) / 2 } | I _ { p } + V | ^ { - ( \alpha + b ) }$ ; confidence 0.634 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130123.png ; $\Gamma$ ; confidence 0.634 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017017.png ; $F ( t ) = \int _ { t } ^ { + \infty } p _ { 0 } ( \alpha - t ) \frac { \Pi ( \alpha ) } { \Pi ( \alpha - t ) } d \alpha$ ; confidence 0.634 |
| − | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015067.png ; $B _ { r _ { 1 } } , B _ { r _ { 2 } }$ ; confidence 0.634 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302008.png ; $Y \in \mathfrak { X } ( M )$ ; confidence 0.634 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201307.png ; $M < d$ ; confidence 0.634 |
| − | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310114.png ; $G$ ; confidence 0.634 |
| − | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019059.png ; $k = 1 / 2$ ; confidence 0.633 |
| − | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022075.png ; $\operatorname { spec } ( M , \Delta ^ { ( 0 ) } ) , \ldots , \operatorname { spec } ( M , \Delta ^ { ( d i m M ) } )$ ; confidence 0.633 |
| − | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005064.png ; $QS ( T ) = \cup _ { M \geq 1 } M$ ; confidence 0.633 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010037.png ; $E _ { y }$ ; confidence 0.633 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012046.png ; $z \in ( 1 , \dots , M )$ ; confidence 0.633 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/p/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014058.png ; $\psi ( \gamma ) = \frac { 2 } { \pi ^ { 2 } \gamma } + O ( \frac { 1 } { \gamma ^ { 3 } } ) \text { as } \gamma \rightarrow + \infty$ ; confidence 0.633 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png ; $S ^ { 3 } / \Gamma$ ; confidence 0.633 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004016.png ; $\{ l _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.633 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027026.png ; $Q ^ { B }$ ; confidence 0.633 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007071.png ; $A b ^ { Z C }$ ; confidence 0.633 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004018.png ; $Z [ v ^ { \pm 1 } , z ^ { \pm 1 } ]$ ; confidence 0.633 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017031.png ; $y _ { t } ^ { ( l ) }$ ; confidence 0.633 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/p/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014031.png ; $H$ ; confidence 0.632 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001052.png ; $\alpha \wedge \beta ^ { x } \neq 0$ ; confidence 0.632 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010052.png ; $R _ { 1414 } = \alpha _ { 1 } , R _ { 2323 } = \alpha _ { 1 } , R _ { 3434 } = \alpha _ { 2 } , R _ { 1234 } = \alpha _ { 1 } , R _ { 1324 } = - \alpha _ { 1 } , R _ { 1423 } = \alpha _ { 2 }$ ; confidence 0.632 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040232.png ; $E ( \varphi , \psi ) = \{ \epsilon _ { i } ( \varphi , \psi ) : i \in I \}$ ; confidence 0.632 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027013.png ; $R _ { n } = I - Q _ { n }$ ; confidence 0.632 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017015.png ; $K \subset C$ ; confidence 0.632 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470280.png ; $m$ ; confidence 0.632 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003060.png ; $g ( z ) = r ( z ) + \sum _ { i = 1 } ^ { \infty } s _ { 2 m + i } z ^ { - ( 2 m + i ) }$ ; confidence 0.632 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024170/c02417020.png ; $V _ { \pm }$ ; confidence 0.632 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012041.png ; $f = ( f _ { 1 } , \ldots , f _ { M } )$ ; confidence 0.632 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230110.png ; $C$ ; confidence 0.632 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010055.png ; $\bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.632 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015160/b01516022.png ; $x _ { 0 } > 0$ ; confidence 0.632 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150107.png ; $P _ { y }$ ; confidence 0.632 |
| − | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040797.png ; $C \in K$ ; confidence 0.632 |
| − | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025019.png ; $T _ { 0 }$ ; confidence 0.632 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004083.png ; $\Sigma _ { P } = \{ ( x , \xi ) \in \Omega \times ( R ^ { n } \backslash \{ 0 \} ) : p _ { m } ( x , \xi ) = 0 \}$ ; confidence 0.632 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004073.png ; $D _ { x } ^ { \alpha } = D _ { x _ { 1 } } ^ { \alpha _ { 1 } } \ldots D _ { x _ { n } } ^ { \alpha _ { n } }$ ; confidence 0.632 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003041.png ; $f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ]$ ; confidence 0.632 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017320/b0173204.png ; $W ^ { X }$ ; confidence 0.632 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023068.png ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H$ ; confidence 0.632 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018051.png ; $A ( X )$ ; confidence 0.632 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200708.png ; $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ ; confidence 0.632 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015014.png ; $( A , [ , ] )$ ; confidence 0.632 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018050.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { T _ { x } - S } { S _ { x } - S } = 0$ ; confidence 0.632 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026053.png ; $\partial _ { S }$ ; confidence 0.631 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011094.png ; $T \in GL ( n , R )$ ; confidence 0.631 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017020.png ; $E \varepsilon _ { t } \varepsilon _ { s } ^ { \prime } = \delta _ { s t } \Sigma$ ; confidence 0.631 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p1300906.png ; $B ( x _ { 0 } , r ) = \{ x \in R ^ { n } : | x - x _ { 0 } | < r \}$ ; confidence 0.631 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003036.png ; $F _ { K } \circ \Phi$ ; confidence 0.631 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004080.png ; $| x | | y | \bigwedge | y | ^ { 2 } | x | ^ { 2 } = | x | | y |$ ; confidence 0.631 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120080/b12008011.png ; $E _ { avg } ( \mu , m ) = \int | \epsilon ( p , m ) | d \mu ( p )$ ; confidence 0.631 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280172.png ; $\pi ( a ) M ^ { U } ( [ t , \infty ) ) \subseteq M ^ { U } ( [ t + s , \infty ) )$ ; confidence 0.631 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300806.png ; $( 1 _ { m } - k ^ { 2 } ) f _ { m } = 0$ ; confidence 0.631 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009092.png ; $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.631 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240353.png ; $E ( Z _ { 3 } ) = 0$ ; confidence 0.631 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002054.png ; $+ O ( \frac { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } { n ^ { 3 / 4 } } )$ ; confidence 0.631 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022040.png ; $\gamma j = 0$ ; confidence 0.631 |
| − | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009019.png ; $\{ F _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.631 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043095.png ; $B U _ { q } ( g )$ ; confidence 0.631 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010015.png ; $t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } }$ ; confidence 0.631 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050114.png ; $\sigma _ { \pi } ( A , X ) = \sigma _ { \delta } ( A , X ) = \sigma _ { T } ( A , X )$ ; confidence 0.631 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015033.png ; $( g ) = \operatorname { Der } ( g )$ ; confidence 0.631 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036020.png ; $P y$ ; confidence 0.630 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003044.png ; $N ( X )$ ; confidence 0.630 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c0224009.png ; $1 , \dots , n$ ; confidence 0.630 |
| − | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009036.png ; $P _ { \Omega } ( , \xi )$ ; confidence 0.630 |
| − | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200603.png ; $D _ { 1 } \subset R ^ { 2 }$ ; confidence 0.630 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013054.png ; $\zeta _ { \lambda } ^ { \pi }$ ; confidence 0.630 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002061.png ; $A \in S$ ; confidence 0.630 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023023.png ; $L _ { i } \in \Omega ^ { l } ( N ; T N )$ ; confidence 0.630 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001035.png ; $C _ { 1 } N ^ { ( n - 1 ) / 2 } \leq \| S _ { N } \| \leq C _ { 2 } N ^ { ( n - 1 ) / 2 }$ ; confidence 0.630 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100107.png ; $< a$ ; confidence 0.630 |
| − | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060112.png ; $\{ r _ { 2 } ( A ) \} _ { i = 1 } ^ { n }$ ; confidence 0.630 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008048.png ; $m _ { s } = \operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) > 0$ ; confidence 0.630 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140145.png ; $K I = K ( I , \preceq )$ ; confidence 0.630 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010165.png ; $\sum | c$ ; confidence 0.630 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230123.png ; $( L _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.630 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105038.png ; $A _ { Q }$ ; confidence 0.630 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240438.png ; $1$ ; confidence 0.630 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452022.png ; $a + b \in F$ ; confidence 0.629 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014051.png ; $r ( 1 + 2.78 + \lambda )$ ; confidence 0.629 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005027.png ; $( u = v ) \in S$ ; confidence 0.629 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018013.png ; $R$ ; confidence 0.629 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304509.png ; $\overline { R } = \sum _ { i = 1 } ^ { n } R _ { i } / n = ( n + 1 ) / 2 = \sum _ { i = 1 } ^ { n } S _ { i } / n = \overline { S }$ ; confidence 0.629 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002033.png ; $\overline { H } \square ^ { x }$ ; confidence 0.629 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015037.png ; $G \subset \operatorname { GL } ( V )$ ; confidence 0.629 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020197.png ; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006030.png ; $\tilde { D } = \{ \alpha \in G : \alpha D \alpha ^ { - 1 } \text { is }$ ; confidence 0.629 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021041.png ; $p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in C$ ; confidence 0.629 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003023.png ; $c _ { 1 } ( M ) _ { R } > 0$ ; confidence 0.629 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200807.png ; $x , y , z _ { 1 } , \dots , z _ { s } \in Z$ ; confidence 0.629 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012049.png ; $X ^ { 2 x + 1 }$ ; confidence 0.629 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005046.png ; $k = i k$ ; confidence 0.629 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330266.png ; $H _ { y }$ ; confidence 0.629 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090116.png ; $\Gamma = \operatorname { Gal } ( K / k )$ ; confidence 0.628 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009094.png ; $x = ( x , \ldots , x )$ ; confidence 0.628 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140138.png ; $q : Z ^ { l } \rightarrow Z$ ; confidence 0.628 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002010.png ; $\operatorname { su } ( 2 )$ ; confidence 0.628 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029081.png ; $y _ { x } \geq 0$ ; confidence 0.628 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240516.png ; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210104.png ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005044.png ; $TD [ r , s ]$ ; confidence 0.628 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014026.png ; $\| W _ { k } \| = \| F k \| _ { L } \infty$ ; confidence 0.628 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/s/s120/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340123.png ; $2$ ; confidence 0.628 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020135.png ; $f \in A$ ; confidence 0.628 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005020.png ; $n ^ { \text { th } }$ ; confidence 0.628 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016023.png ; $A X B + C \sim E _ { q , n } ( A M B + C , ( A \Sigma A ^ { \prime } ) \otimes ( B ^ { \prime } \Phi B ) , \psi )$ ; confidence 0.628 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011010.png ; $x . D _ { x }$ ; confidence 0.628 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011044.png ; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022072.png ; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { X } G ( u ) \leq 0$ ; confidence 0.627 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023047.png ; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023044.png ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \} , X \in R ^ { p \times n }$ ; confidence 0.627 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052030.png ; $3 + 2$ ; confidence 0.627 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200305.png ; $P \subset X$ ; confidence 0.627 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020115.png ; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100137.png ; $K \subset C ^ { n + 1 }$ ; confidence 0.627 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080215.png ; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302507.png ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) ( x \vee p \frac { 1 } { x } ) = \delta ( x )$ ; confidence 0.627 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005082.png ; $\sigma _ { \delta }$ ; confidence 0.627 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015570/b01557030.png ; $D _ { j }$ ; confidence 0.627 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001053.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004067.png ; $\Gamma \subset \Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.627 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012086.png ; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032088.png ; $a _ { n } i = ( a _ { n } )$ ; confidence 0.627 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/s/s120/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150127.png ; $G \nmid G$ ; confidence 0.627 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030161.png ; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032027.png ; $i m + 1$ ; confidence 0.627 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028071.png ; $\rho \otimes x$ ; confidence 0.627 |
| − | 281. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230143.png ; $S _ { i } > 0 , i = 1 , \dots , r$ ; confidence 0.627 |
| − | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002014.png ; $y _ { j } < y _ { k }$ ; confidence 0.627 |
| − | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019030.png ; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau$ ; confidence 0.627 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/t/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019021.png ; $f ( k - 1 )$ ; confidence 0.627 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211030.png ; $p _ { i } ( \theta ) = P \{ X _ { i } \in ( x _ { i } - 1 , x _ { i } ] \} > 0$ ; confidence 0.626 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240206.png ; $k ( X ) = r$ ; confidence 0.626 |
| − | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300303.png ; $\rho : G / Q \rightarrow GL ( M )$ ; confidence 0.626 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/t/t120/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060108.png ; $\rho _ { atom } ^ { TF } ( x , N = Z , Z ) \sim \gamma ^ { 3 } ( \frac { 3 } { \pi } ) ^ { 3 } | x | ^ { - 6 }$ ; confidence 0.626 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010037.png ; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) )$ ; confidence 0.626 |
| − | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003030.png ; $Ch ( [ a ] ) T ( M )$ ; confidence 0.626 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005047.png ; $i = 1 , \ldots , k$ ; confidence 0.626 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301203.png ; $CL ( X )$ ; confidence 0.626 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180427.png ; $( q _ { 1 } , \dots , q _ { m } )$ ; confidence 0.626 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313056.png ; $B + A$ ; confidence 0.626 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240433.png ; $A \Theta B$ ; confidence 0.626 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004044.png ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow C ^ { n }$ ; confidence 0.626 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110197.png ; $G _ { X } ( X - Y \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X }$ ; confidence 0.626 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png ; $F _ { j k } =$ ; confidence 0.626 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png ; $M$ ; confidence 0.626 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420115.png ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626 |
Revision as of 00:10, 13 February 2020
List
1.
; $f , g \in C [ R ]$ ; confidence 0.643
2.
; $o : 1 \rightarrow N$ ; confidence 0.643
3.
; $r ( K _ { X } + B )$ ; confidence 0.643
4.
; $1$ ; confidence 0.643
5.
; $\vec { F B }$ ; confidence 0.643
6.
; $\pi _ { 0 } : N _ { 0 } \rightarrow N$ ; confidence 0.643
7.
; $x \in A ^ { + }$ ; confidence 0.643
8.
; $\{ A _ { i } \} _ { i = 1 } ^ { k }$ ; confidence 0.642
9.
; $R P ^ { n } \geq n + 1$ ; confidence 0.642
10.
; $\sigma _ { 1 } , \ldots , \sigma _ { t }$ ; confidence 0.642
11.
; $C ( S \times T )$ ; confidence 0.642
12.
; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \dots p _ { s } ^ { z _ { s } }$ ; confidence 0.642
13.
; $\sqrt { 1 - x ^ { 2 } } w ( x ) > 0$ ; confidence 0.642
14.
; $S = \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } ( X _ { i } - X ) ( X _ { i } - X ) ^ { \prime }$ ; confidence 0.642
15.
; $\phi j$ ; confidence 0.642
16.
; $\langle [ A ] , \phi \} = \int _ { \operatorname { reg } A } \phi$ ; confidence 0.642
17.
; $s \times p$ ; confidence 0.642
18.
; $12$ ; confidence 0.642
19.
; $F _ { \sigma } \in \tilde { O } ( ( \Omega + \Gamma _ { \sigma } ) \cap U )$ ; confidence 0.642
20.
; $N _ { \epsilon } ( C )$ ; confidence 0.642
21.
; $X \times Y$ ; confidence 0.642
22.
; $Q \in [ \alpha , b ]$ ; confidence 0.642
23.
; $f _ { 1 } : = x _ { 1 } ^ { d }$ ; confidence 0.642
24.
; $t \searrow 0$ ; confidence 0.641
25.
; $E ^ { TF } ( N ) = \operatorname { inf } \{ E ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \}$ ; confidence 0.641
26.
; $L _ { C } ^ { p } ( G )$ ; confidence 0.641
27.
; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; A , B ) , * )$ ; confidence 0.641
28.
; $p \subset a$ ; confidence 0.641
29.
; $h = 1$ ; confidence 0.641
30.
; $f \rightarrow \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } \operatorname { Re } \frac { e ^ { i t } + z } { e ^ { t t } - z } f ( e ^ { i t } ) d t$ ; confidence 0.641
31.
; $e \leq x$ ; confidence 0.641
32.
; $x \in \Lambda$ ; confidence 0.641
33.
; $\| u f \| \leq \| f \| / c$ ; confidence 0.641
34.
; $E ^ { k } = M \times F \times F ^ { ( 1 ) } \times \ldots F ^ { ( k ) }$ ; confidence 0.641
35.
; $E _ { \theta } ( N ) = \frac { P _ { \theta } ( S _ { N } = K ) K - P _ { \theta } ( S _ { N } = - J ) J } { 2 \theta - 1 }$ ; confidence 0.641
36.
; $U : C \rightarrow Set$ ; confidence 0.641
37.
; $s = 1 + p _ { 1 } / r + \ldots + p _ { 1 } \ldots p _ { k - 1 } / r ^ { k - 1 }$ ; confidence 0.641
38.
; $y _ { 0 } = g ( x _ { 0 } )$ ; confidence 0.641
39.
; $A = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.641
40.
; $d _ { 2 } ( e _ { 2 } ^ { j } )$ ; confidence 0.640
41.
; $a \leftrightarrow b a b ^ { - 1 }$ ; confidence 0.640
42.
; $\phi _ { p }$ ; confidence 0.640
43.
; $( R _ { + } \backslash \{ 0 \} , x , \leq )$ ; confidence 0.640
44.
; $\in \otimes \square ^ { p + q + 1 } \varepsilon$ ; confidence 0.640
45.
; $R \subseteq A ^ { x }$ ; confidence 0.640
46.
; $E _ { P } ( d _ { 0 } ) = 0$ ; confidence 0.640
47.
; $( C ) \int _ { A } f d m = ( C ) \int f \cdot \chi _ { A } d m$ ; confidence 0.640
48.
; $0 < t < \infty$ ; confidence 0.640
49.
; $\hat { B } ^ { k }$ ; confidence 0.640
50.
; $E _ { \theta } ( X _ { i } ) = P _ { \theta } ( X _ { i } = 1 ) = \theta = 1 - P _ { \theta } ( X _ { i } = 0 )$ ; confidence 0.640
51.
; $f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$ ; confidence 0.640
52.
; $( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) )$ ; confidence 0.640
53.
; $\alpha , b \in \Omega$ ; confidence 0.640
54.
; $x \in Z$ ; confidence 0.640
55.
; $f _ { t , s }$ ; confidence 0.640
56.
; $R = \sum _ { s = 1 } ^ { n } a _ { s } \otimes b _ { s } \in A \otimes _ { k } A$ ; confidence 0.640
57.
; $\overline { m } = \{ m _ { x } \} _ { x = 0 } ^ { \infty }$ ; confidence 0.639
58.
; $S ^ { \lambda }$ ; confidence 0.639
59.
; $S A T$ ; confidence 0.639
60.
; $K$ ; confidence 0.639
61.
; $\lambda \in \Delta$ ; confidence 0.639
62.
; $\pi \in S _ { y }$ ; confidence 0.639
63.
; $T + T = I = T T +$ ; confidence 0.639
64.
; $U _ { n + 1 } ( x ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } , n = 0,1$ ; confidence 0.639
65.
; $\operatorname { Re } h ( z ) > 0$ ; confidence 0.639
66.
; $\langle A \rangle _ { T } = Z ^ { - 1 } \operatorname { Tr } [ \operatorname { exp } ( - \frac { H } { k _ { B } T } ) A ]$ ; confidence 0.639
67.
; $( X _ { n } ) _ { n \in Z }$ ; confidence 0.639
68.
; $Z ( C )$ ; confidence 0.639
69.
; $f _ { 1 } , \ldots , f _ { d }$ ; confidence 0.639
70.
; $V _ { ( n ) } < \infty$ ; confidence 0.639
71.
; $Z ]$ ; confidence 0.638
72.
; $( b )$ ; confidence 0.638
73.
; $\operatorname { gcd } ( p _ { 1 } \ldots p _ { k } , q ) = 1$ ; confidence 0.638
74.
; $U _ { t } ^ { j } = u _ { j } ( B _ { \operatorname { min } } ( t , \tau ) )$ ; confidence 0.638
75.
; $Y ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.638
76.
; $\{ 0 , \pm x _ { 1 } , \ldots , \pm x _ { k } \}$ ; confidence 0.638
77.
; $f _ { n } \in H ^ { \otimes n }$ ; confidence 0.638
78.
; $K Q$ ; confidence 0.638
79.
; $H _ { Z } ( t )$ ; confidence 0.638
80.
; $v ( x , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k ) \frac { e ^ { i k \gamma } } { r } + o ( \frac { 1 } { r } )$ ; confidence 0.638
81.
; $k S _ { y }$ ; confidence 0.638
82.
; $j = 1 , \ldots , n$ ; confidence 0.638
83.
; $\sum _ { \nu = 1 } ^ { x } \alpha _ { \nu } \leq 2$ ; confidence 0.637
84.
; $c j ( \lambda )$ ; confidence 0.637
85.
; $S = \{ p _ { 1 } , \dots , p _ { s } \} \cup \{ p :$ ; confidence 0.637
86.
; $w = ( w _ { 1 } , \dots , w _ { x } )$ ; confidence 0.637
87.
; $\sum _ { n = 1 } ^ { \infty } y _ { n }$ ; confidence 0.637
88.
; $p ( X ) \approx \overline { E } \square ^ { q } ( S ^ { n } \backslash X ) , p + q = n - 1$ ; confidence 0.637
89.
; $N ( s )$ ; confidence 0.637
90.
; $X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } )$ ; confidence 0.637
91.
; $G _ { i } + 1$ ; confidence 0.637
92.
; $q 2 ( x )$ ; confidence 0.637
93.
; $\operatorname { ker } ( \gamma \circ \alpha ^ { \prime } ) \subset \mathfrak { g }$ ; confidence 0.637
94.
; $d \circ e = f$ ; confidence 0.637
95.
; $t$ ; confidence 0.637
96.
; $z _ { i } = 1 , \dots , p - 1$ ; confidence 0.637
97.
; $e _ { 1 } , \dots , e _ { s }$ ; confidence 0.637
98.
; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq$ ; confidence 0.637
99.
; $7 + 2$ ; confidence 0.637
100.
; $h ^ { i } ( K _ { X } + j L - \sum _ { k = 1 } ^ { r } [ \frac { j \alpha _ { k } } { N } ] D _ { k } ) = 0$ ; confidence 0.637
101.
; $\alpha , b \in A _ { k }$ ; confidence 0.636
102.
; $S _ { k } = \left( \begin{array} { c } { n } \\ { k } \end{array} \right) \frac { ( n - k ) ! } { n ! }$ ; confidence 0.636
103.
; $\alpha \in Z \alpha _ { 1 } + Z \alpha _ { 2 } +$ ; confidence 0.636
104.
; $C _ { B _ { 2 } } ( L _ { n } )$ ; confidence 0.636
105.
; $\beta ( \phi , \rho ) ( t ) = \int _ { N } u _ { \Phi } \rho$ ; confidence 0.636
106.
; $u ^ { x } = 1$ ; confidence 0.636
107.
; $\nabla _ { Z } R$ ; confidence 0.636
108.
; $V _ { \text { simp } } ( K _ { p } )$ ; confidence 0.636
109.
; $Z ( g ^ { \alpha } h ^ { c } , g ^ { b } h ^ { d } ; z ) = \alpha Z ( g h ; \frac { a z + b } { c z + d } )$ ; confidence 0.636
110.
; $M _ { z }$ ; confidence 0.636
111.
; $a ^ { [ N ] } ( z ) \equiv 1$ ; confidence 0.636
112.
; $v \notin [ 0,1$ ; confidence 0.636
113.
; $\alpha _ { 2 } = 1$ ; confidence 0.636
114.
; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = 0 , \quad \mu = \text { const } > 0 , \quad \dot { x } ( t ) \equiv \frac { d x } { d t }$ ; confidence 0.636
115.
; $Z \sim N _ { p } ( 0 , l )$ ; confidence 0.636
116.
; $x , y , z \in E _ { + }$ ; confidence 0.636
117.
; $L _ { w } ( X , Y )$ ; confidence 0.636
118.
; $D _ { 1 }$ ; confidence 0.636
119.
; $c - 2 \operatorname { deg } l$ ; confidence 0.636
120.
; $i = 1 , \ldots , 4$ ; confidence 0.636
121.
; $S _ { f } ( a _ { 0 } )$ ; confidence 0.636
122.
; $f | _ { K }$ ; confidence 0.635
123.
; $( \alpha _ { 1 } \cup \gamma , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.635
124.
; $E [ C ]$ ; confidence 0.635
125.
; $C _ { 1 }$ ; confidence 0.635
126.
; $V ( M )$ ; confidence 0.635
127.
; $\left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq$ ; confidence 0.635
128.
; $E _ { 0 }$ ; confidence 0.635
129.
; $A x$ ; confidence 0.635
130.
; $X = G \wedge H$ ; confidence 0.635
131.
; $X \times X$ ; confidence 0.635
132.
; $A ( D )$ ; confidence 0.635
133.
; $f ^ { em } = \operatorname { div } t ^ { em } - \frac { \partial G ^ { em } } { \partial t }$ ; confidence 0.635
134.
; $z \in D$ ; confidence 0.635
135.
; $H ^ { 2 r + 1 } ( M , C )$ ; confidence 0.635
136.
; $\overline { \delta }$ ; confidence 0.635
137.
; $P \equiv \left( \begin{array} { c c } { \operatorname { exp } ( \frac { J + H } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } \\ { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { J - H } { k _ { B } T } ) } \end{array} \right)$ ; confidence 0.635
138.
; $V _ { 0 }$ ; confidence 0.635
139.
; $\int _ { A } \operatorname { exp } ( h ^ { \prime } \Delta _ { N } ^ { * } ( \theta ) ) d P _ { n , \theta }$ ; confidence 0.635
140.
; $T ^ { k }$ ; confidence 0.635
141.
; $P _ { K } ( 1,0 ) = \alpha _ { 2 }$ ; confidence 0.635
142.
; $D$ ; confidence 0.635
143.
; $\operatorname { max } _ { k = 1 , \ldots , n } ( \frac { 1 } { n } | s _ { k } | ) ^ { 1 / k } > \frac { 1 } { 5 } > \frac { 1 } { 2 + \sqrt { 8 } }$ ; confidence 0.635
144.
; $\rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }$ ; confidence 0.635
145.
; $P _ { 0 } \in P$ ; confidence 0.635
146.
; $M _ { n } = \{ P ( X , Y ) = \sum _ { \nu = 0 } ^ { n } a _ { \nu } X ^ { \nu } Y ^ { n - \nu } : a _ { \nu } \in Q \}$ ; confidence 0.635
147.
; $\sigma _ { k - 1 } ( n ) = \sum _ { 0 < d | n } d ^ { k - 1 }$ ; confidence 0.635
148.
; $\operatorname { lim } _ { \tau \rightarrow \infty } \frac { \operatorname { det } ( I + W _ { \tau } ( k ) ) } { G ( a ) ^ { \tau } } = E ( a )$ ; confidence 0.634
149.
; $\| y - X b \| ^ { 2 }$ ; confidence 0.634
150.
; $\operatorname { cap } ( E ) = \operatorname { exp } ( - \operatorname { sup } _ { z \in C ^ { n } } \rho _ { L _ { E } } ( z ) )$ ; confidence 0.634
151.
; $H ^ { n + 1 } ( X , A ; G ) \rightarrow$ ; confidence 0.634
152.
; $E ^ { TF } ( N )$ ; confidence 0.634
153.
; $\frac { 1 } { \beta _ { p } ( a , b ) } | V | ^ { \alpha - ( p + 1 ) / 2 } | I _ { p } + V | ^ { - ( \alpha + b ) }$ ; confidence 0.634
154.
; $\Gamma$ ; confidence 0.634
155.
; $F ( t ) = \int _ { t } ^ { + \infty } p _ { 0 } ( \alpha - t ) \frac { \Pi ( \alpha ) } { \Pi ( \alpha - t ) } d \alpha$ ; confidence 0.634
156.
; $B _ { r _ { 1 } } , B _ { r _ { 2 } }$ ; confidence 0.634
157.
; $Y \in \mathfrak { X } ( M )$ ; confidence 0.634
158.
; $M < d$ ; confidence 0.634
159.
; $G$ ; confidence 0.634
160.
; $k = 1 / 2$ ; confidence 0.633
161.
; $\operatorname { spec } ( M , \Delta ^ { ( 0 ) } ) , \ldots , \operatorname { spec } ( M , \Delta ^ { ( d i m M ) } )$ ; confidence 0.633
162.
; $QS ( T ) = \cup _ { M \geq 1 } M$ ; confidence 0.633
163.
; $E _ { y }$ ; confidence 0.633
164.
; $z \in ( 1 , \dots , M )$ ; confidence 0.633
165.
; $\psi ( \gamma ) = \frac { 2 } { \pi ^ { 2 } \gamma } + O ( \frac { 1 } { \gamma ^ { 3 } } ) \text { as } \gamma \rightarrow + \infty$ ; confidence 0.633
166.
; $S ^ { 3 } / \Gamma$ ; confidence 0.633
167.
; $\{ l _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.633
168.
; $Q ^ { B }$ ; confidence 0.633
169.
; $A b ^ { Z C }$ ; confidence 0.633
170.
; $Z [ v ^ { \pm 1 } , z ^ { \pm 1 } ]$ ; confidence 0.633
171.
; $y _ { t } ^ { ( l ) }$ ; confidence 0.633
172.
; $H$ ; confidence 0.632
173.
; $\alpha \wedge \beta ^ { x } \neq 0$ ; confidence 0.632
174.
; $R _ { 1414 } = \alpha _ { 1 } , R _ { 2323 } = \alpha _ { 1 } , R _ { 3434 } = \alpha _ { 2 } , R _ { 1234 } = \alpha _ { 1 } , R _ { 1324 } = - \alpha _ { 1 } , R _ { 1423 } = \alpha _ { 2 }$ ; confidence 0.632
175.
; $E ( \varphi , \psi ) = \{ \epsilon _ { i } ( \varphi , \psi ) : i \in I \}$ ; confidence 0.632
176.
; $R _ { n } = I - Q _ { n }$ ; confidence 0.632
177.
; $K \subset C$ ; confidence 0.632
178.
; $m$ ; confidence 0.632
179.
; $g ( z ) = r ( z ) + \sum _ { i = 1 } ^ { \infty } s _ { 2 m + i } z ^ { - ( 2 m + i ) }$ ; confidence 0.632
180.
; $V _ { \pm }$ ; confidence 0.632
181.
; $f = ( f _ { 1 } , \ldots , f _ { M } )$ ; confidence 0.632
182.
; $C$ ; confidence 0.632
183.
; $\bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.632
184.
; $x _ { 0 } > 0$ ; confidence 0.632
185.
; $P _ { y }$ ; confidence 0.632
186.
; $C \in K$ ; confidence 0.632
187.
; $T _ { 0 }$ ; confidence 0.632
188.
; $\Sigma _ { P } = \{ ( x , \xi ) \in \Omega \times ( R ^ { n } \backslash \{ 0 \} ) : p _ { m } ( x , \xi ) = 0 \}$ ; confidence 0.632
189.
; $D _ { x } ^ { \alpha } = D _ { x _ { 1 } } ^ { \alpha _ { 1 } } \ldots D _ { x _ { n } } ^ { \alpha _ { n } }$ ; confidence 0.632
190.
; $f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ]$ ; confidence 0.632
191.
; $W ^ { X }$ ; confidence 0.632
192.
; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H$ ; confidence 0.632
193.
; $A ( X )$ ; confidence 0.632
194.
; $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ ; confidence 0.632
195.
; $( A , [ , ] )$ ; confidence 0.632
196.
; $\operatorname { lim } _ { n \rightarrow \infty } \frac { T _ { x } - S } { S _ { x } - S } = 0$ ; confidence 0.632
197.
; $\partial _ { S }$ ; confidence 0.631
198.
; $T \in GL ( n , R )$ ; confidence 0.631
199.
; $E \varepsilon _ { t } \varepsilon _ { s } ^ { \prime } = \delta _ { s t } \Sigma$ ; confidence 0.631
200.
; $B ( x _ { 0 } , r ) = \{ x \in R ^ { n } : | x - x _ { 0 } | < r \}$ ; confidence 0.631
201.
; $F _ { K } \circ \Phi$ ; confidence 0.631
202.
; $| x | | y | \bigwedge | y | ^ { 2 } | x | ^ { 2 } = | x | | y |$ ; confidence 0.631
203.
; $E _ { avg } ( \mu , m ) = \int | \epsilon ( p , m ) | d \mu ( p )$ ; confidence 0.631
204.
; $\pi ( a ) M ^ { U } ( [ t , \infty ) ) \subseteq M ^ { U } ( [ t + s , \infty ) )$ ; confidence 0.631
205.
; $( 1 _ { m } - k ^ { 2 } ) f _ { m } = 0$ ; confidence 0.631
206.
; $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.631
207.
; $E ( Z _ { 3 } ) = 0$ ; confidence 0.631
208.
; $+ O ( \frac { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } { n ^ { 3 / 4 } } )$ ; confidence 0.631
209.
; $\gamma j = 0$ ; confidence 0.631
210.
; $\{ F _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.631
211.
; $B U _ { q } ( g )$ ; confidence 0.631
212.
; $t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } }$ ; confidence 0.631
213.
; $\sigma _ { \pi } ( A , X ) = \sigma _ { \delta } ( A , X ) = \sigma _ { T } ( A , X )$ ; confidence 0.631
214.
; $( g ) = \operatorname { Der } ( g )$ ; confidence 0.631
215.
; $P y$ ; confidence 0.630
216.
; $N ( X )$ ; confidence 0.630
217.
; $1 , \dots , n$ ; confidence 0.630
218.
; $P _ { \Omega } ( , \xi )$ ; confidence 0.630
219.
; $D _ { 1 } \subset R ^ { 2 }$ ; confidence 0.630
220.
; $\zeta _ { \lambda } ^ { \pi }$ ; confidence 0.630
221.
; $A \in S$ ; confidence 0.630
222.
; $L _ { i } \in \Omega ^ { l } ( N ; T N )$ ; confidence 0.630
223.
; $C _ { 1 } N ^ { ( n - 1 ) / 2 } \leq \| S _ { N } \| \leq C _ { 2 } N ^ { ( n - 1 ) / 2 }$ ; confidence 0.630
224.
; $< a$ ; confidence 0.630
225.
; $\{ r _ { 2 } ( A ) \} _ { i = 1 } ^ { n }$ ; confidence 0.630
226.
; $m _ { s } = \operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) > 0$ ; confidence 0.630
227.
; $K I = K ( I , \preceq )$ ; confidence 0.630
228.
; $\sum | c$ ; confidence 0.630
229.
; $( L _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.630
230.
; $A _ { Q }$ ; confidence 0.630
231.
; $1$ ; confidence 0.630
232.
; $a + b \in F$ ; confidence 0.629
233.
; $r ( 1 + 2.78 + \lambda )$ ; confidence 0.629
234.
; $( u = v ) \in S$ ; confidence 0.629
235.
; $R$ ; confidence 0.629
236.
; $\overline { R } = \sum _ { i = 1 } ^ { n } R _ { i } / n = ( n + 1 ) / 2 = \sum _ { i = 1 } ^ { n } S _ { i } / n = \overline { S }$ ; confidence 0.629
237.
; $\overline { H } \square ^ { x }$ ; confidence 0.629
238.
; $G \subset \operatorname { GL } ( V )$ ; confidence 0.629
239.
; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629
240.
; $\tilde { D } = \{ \alpha \in G : \alpha D \alpha ^ { - 1 } \text { is }$ ; confidence 0.629
241.
; $p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in C$ ; confidence 0.629
242.
; $c _ { 1 } ( M ) _ { R } > 0$ ; confidence 0.629
243.
; $x , y , z _ { 1 } , \dots , z _ { s } \in Z$ ; confidence 0.629
244.
; $X ^ { 2 x + 1 }$ ; confidence 0.629
245.
; $k = i k$ ; confidence 0.629
246.
; $H _ { y }$ ; confidence 0.629
247.
; $\Gamma = \operatorname { Gal } ( K / k )$ ; confidence 0.628
248.
; $x = ( x , \ldots , x )$ ; confidence 0.628
249.
; $q : Z ^ { l } \rightarrow Z$ ; confidence 0.628
250.
; $\operatorname { su } ( 2 )$ ; confidence 0.628
251.
; $y _ { x } \geq 0$ ; confidence 0.628
252.
; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628
253.
; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628
254.
; $TD [ r , s ]$ ; confidence 0.628
255.
; $\| W _ { k } \| = \| F k \| _ { L } \infty$ ; confidence 0.628
256.
; $2$ ; confidence 0.628
257.
; $f \in A$ ; confidence 0.628
258.
; $n ^ { \text { th } }$ ; confidence 0.628
259.
; $A X B + C \sim E _ { q , n } ( A M B + C , ( A \Sigma A ^ { \prime } ) \otimes ( B ^ { \prime } \Phi B ) , \psi )$ ; confidence 0.628
260.
; $x . D _ { x }$ ; confidence 0.628
261.
; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628
262.
; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { X } G ( u ) \leq 0$ ; confidence 0.627
263.
; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627
264.
; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \} , X \in R ^ { p \times n }$ ; confidence 0.627
265.
; $3 + 2$ ; confidence 0.627
266.
; $P \subset X$ ; confidence 0.627
267.
; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627
268.
; $K \subset C ^ { n + 1 }$ ; confidence 0.627
269.
; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627
270.
; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) ( x \vee p \frac { 1 } { x } ) = \delta ( x )$ ; confidence 0.627
271.
; $\sigma _ { \delta }$ ; confidence 0.627
272.
; $D _ { j }$ ; confidence 0.627
273.
; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627
274.
; $\Gamma \subset \Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.627
275.
; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627
276.
; $a _ { n } i = ( a _ { n } )$ ; confidence 0.627
277.
; $G \nmid G$ ; confidence 0.627
278.
; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627
279.
; $i m + 1$ ; confidence 0.627
280.
; $\rho \otimes x$ ; confidence 0.627
281.
; $S _ { i } > 0 , i = 1 , \dots , r$ ; confidence 0.627
282.
; $y _ { j } < y _ { k }$ ; confidence 0.627
283.
; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau$ ; confidence 0.627
284.
; $f ( k - 1 )$ ; confidence 0.627
285.
; $p _ { i } ( \theta ) = P \{ X _ { i } \in ( x _ { i } - 1 , x _ { i } ] \} > 0$ ; confidence 0.626
286.
; $k ( X ) = r$ ; confidence 0.626
287.
; $\rho : G / Q \rightarrow GL ( M )$ ; confidence 0.626
288.
; $\rho _ { atom } ^ { TF } ( x , N = Z , Z ) \sim \gamma ^ { 3 } ( \frac { 3 } { \pi } ) ^ { 3 } | x | ^ { - 6 }$ ; confidence 0.626
289.
; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) )$ ; confidence 0.626
290.
; $Ch ( [ a ] ) T ( M )$ ; confidence 0.626
291.
; $i = 1 , \ldots , k$ ; confidence 0.626
292.
; $CL ( X )$ ; confidence 0.626
293.
; $( q _ { 1 } , \dots , q _ { m } )$ ; confidence 0.626
294.
; $B + A$ ; confidence 0.626
295.
; $A \Theta B$ ; confidence 0.626
296.
; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow C ^ { n }$ ; confidence 0.626
297.
; $G _ { X } ( X - Y \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X }$ ; confidence 0.626
298.
; $F _ { j k } =$ ; confidence 0.626
299.
; $M$ ; confidence 0.626
300.
; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626
Maximilian Janisch/latexlist/latex/NoNroff/50. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/50&oldid=44460