Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/43"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 43 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 43 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024037.png ; $U ( \varepsilon )$ ; confidence 0.998
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026040.png ; $\mathfrak { Y } \in A ^ { S }$ ; confidence 0.762
  
2. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024036.png ; $L ( \varepsilon )$ ; confidence 0.990
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007085.png ; $d > 1$ ; confidence 0.762
  
3. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024017.png ; $\varepsilon = - 1$ ; confidence 0.999
+
3. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035310/e0353108.png ; $\{ \omega \}$ ; confidence 0.762
  
4. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024035.png ; $T ( \varepsilon )$ ; confidence 0.994
+
4. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100142.png ; $p = n f ( n - 2 )$ ; confidence 0.762
  
5. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019030.png ; $C _ { H } ( n ) = \{ 1 \}$ ; confidence 0.991
+
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027048.png ; $\operatorname { lim } _ { t \rightarrow \infty } ( U ( t + h ) - U ( t ) ) = \frac { h } { E X _ { 1 } }$ ; confidence 0.762
  
6. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020020.png ; $v _ { x } + 1 = A v _ { x }$ ; confidence 0.514
+
6. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005018.png ; $s ^ { ( k ) }$ ; confidence 0.762
  
7. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020017.png ; $A v _ { i } = v _ { i } + 1$ ; confidence 0.917
+
7. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013018.png ; $P _ { \sigma }$ ; confidence 0.762
  
8. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021099.png ; $p _ { j } ( \lambda )$ ; confidence 0.808
+
8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003078.png ; $e = y - \vec { x } ^ { t } \vec { \theta }$ ; confidence 0.762
  
9. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210109.png ; $p _ { i } ( \lambda )$ ; confidence 0.980
+
9. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100142.png ; $( \tilde { G } , \tau ) / \Lambda$ ; confidence 0.762
  
10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302808.png ; $B = \{ r : r \leq b \}$ ; confidence 0.993
+
10. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691097.png ; $2 \epsilon$ ; confidence 0.761
  
11. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001074.png ; $\gamma \in F ^ { * }$ ; confidence 0.999
+
11. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040202.png ; $\operatorname { dist } ( T _ { x } , T _ { y } ) \leq C ( r | x - y | ) ^ { 1 - \epsilon }$ ; confidence 0.761
  
12. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004028.png ; $\gamma _ { t } ^ { 1 }$ ; confidence 0.126
+
12. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013066.png ; $p \notin S$ ; confidence 0.761
  
13. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330606.png ; $A \subset \Omega$ ; confidence 0.991
+
13. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018021.png ; $N \subset M$ ; confidence 0.761
  
14. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040158.png ; $1 < s \leq m / ( m - 1 )$ ; confidence 0.994
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197023.png ; $\lambda _ { k }$ ; confidence 0.761
  
15. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040181.png ; $G ^ { s } ( T ^ { n } ; T )$ ; confidence 0.862
+
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
  
16. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004089.png ; $U \subset \Omega$ ; confidence 0.977
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021180/c021180103.png ; $S$ ; confidence 0.761
  
17. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007024.png ; $m \equiv 3,5,6,7$ ; confidence 0.997
+
17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160154.png ; $( \operatorname { log } n ) ^ { O ( 1 ) }$ ; confidence 0.761
  
18. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010154.png ; $\pi _ { 1 } T ^ { 4 } = 0$ ; confidence 0.649
+
18. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002013.png ; $F _ { x _ { 1 } }$ ; confidence 0.761
  
19. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001015.png ; $J _ { f } ^ { \prime }$ ; confidence 0.614
+
19. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029053.png ; $\operatorname { Ker } ( \partial )$ ; confidence 0.761
  
20. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001046.png ; $\beta ^ { x } \neq 0$ ; confidence 0.897
+
20. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003025.png ; $z \mapsto \{ a b z \}$ ; confidence 0.761
  
21. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009044.png ; $t , g _ { i } , t ^ { - 1 }$ ; confidence 0.903
+
21. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202308.png ; $( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761
  
22. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009042.png ; $t ^ { - 1 } , g _ { i } , t$ ; confidence 0.978
+
22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d1201507.png ; $d , e \in D$ ; confidence 0.761
  
23. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602043.png ; $R \in H ^ { \infty }$ ; confidence 0.999
+
23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004047.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \in \Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.761
  
24. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003042.png ; $i , j = 1,2 , \ldots$ ; confidence 0.608
+
24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023052.png ; $- f _ { t } + ( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761
  
25. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110070/c11007019.png ; $f \in H ^ { \infty }$ ; confidence 0.999
+
25. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051470/i051470126.png ; $a ^ { - 1 }$ ; confidence 0.761
  
26. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020112.png ; $\rho _ { N } ( \phi )$ ; confidence 0.612
+
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320114.png ; $U = ( U , O ( U ) , \text { ev } )$ ; confidence 0.761
  
27. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005043.png ; $\partial ^ { - 1 } x$ ; confidence 0.699
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027046.png ; $T _ { N } : X _ { N } \rightarrow Y _ { N }$ ; confidence 0.761
  
28. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007020.png ; $B ( m , D , 1 ) \leq m D$ ; confidence 0.998
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023053.png ; $\Omega _ { r } = r \Omega$ ; confidence 0.761
  
29. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012064.png ; $d ^ { \prime } = d + t$ ; confidence 0.997
+
29. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140102.png ; $q R : Z ^ { n } \rightarrow Z$ ; confidence 0.761
  
30. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012072.png ; $\pi = 1 y - D ( \phi )$ ; confidence 0.578
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200122.png ; $G \subset R ^ { x }$ ; confidence 0.761
  
31. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001017.png ; $A = [ \alpha _ { j } ]$ ; confidence 0.668
+
31. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034040.png ; $- 1 d$ ; confidence 0.761
  
32. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005052.png ; $\{ \alpha _ { x } \}$ ; confidence 0.375
+
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031070.png ; $( Q _ { 2 } , \mu _ { 2 } )$ ; confidence 0.761
  
33. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008036.png ; $P _ { \theta _ { 0 } }$ ; confidence 0.982
+
33. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080212.png ; $M _ { g , n } + 1$ ; confidence 0.761
  
34. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005086.png ; $\{ \theta _ { n } \}$ ; confidence 0.477
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012021.png ; $U C$ ; confidence 0.760
  
35. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006082.png ; $z \notin \{ x , y \}$ ; confidence 0.988
+
35. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140119.png ; $i , l = 1 , \dots , n$ ; confidence 0.760
  
36. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006041.png ; $( x ) = \{ y : y < p x \}$ ; confidence 0.955
+
36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201107.png ; $( x . \xi ) ^ { w } = ( x . D _ { x } + D _ { x } x ) / 2$ ; confidence 0.760
  
37. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005096.png ; $x < x _ { 0 } < \infty$ ; confidence 0.964
+
37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023035.png ; $\Omega ( M ) = \oplus _ { k } \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.760
  
38. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005055.png ; $q ( x ) \in L _ { 1,1 }$ ; confidence 0.862
+
38. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300709.png ; $( \Delta )$ ; confidence 0.760
  
39. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060180.png ; $A ( y ) : = A ( 0 , y ) = 0$ ; confidence 0.998
+
39. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001051.png ; $v ^ { ( n - 1 ) / 2 }$ ; confidence 0.760
  
40. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007070.png ; $\forall x , y \in P$ ; confidence 0.979
+
40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026065.png ; $\{ A , A _ { s } ^ { * } \} = \delta ( t - s ) , \{ A _ { t } , A _ { s } \} = \{ A _ { t } ^ { * } , A _ { s } ^ { * } \} = 0$ ; confidence 0.760
  
41. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007031.png ; $\alpha \in S ^ { 2 }$ ; confidence 0.658
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.760
  
42. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080106.png ; $T _ { c } = 2 J / k _ { S }$ ; confidence 0.521
+
42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087029.png ; $Ab$ ; confidence 0.760
  
43. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300804.png ; $L _ { 1 } ^ { \prime }$ ; confidence 0.283
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052022.png ; $F ^ { \prime } ( x _ { c } ) s = - F ( x _ { c } )$ ; confidence 0.760
  
44. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008012.png ; $L _ { 2 } ^ { \prime }$ ; confidence 0.549
+
44. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b1200405.png ; $X \subset L ^ { 0 } ( \mu )$ ; confidence 0.760
  
45. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008013.png ; $L _ { 3 } ^ { \prime }$ ; confidence 0.305
+
45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007044.png ; $a ^ { - 1 } b ^ { k } a$ ; confidence 0.760
  
46. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120090/i1200908.png ; $( M ^ { 2 n + 1 } , \xi )$ ; confidence 0.992
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031098.png ; $N E X P$ ; confidence 0.760
  
47. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010040.png ; $R ( X , Y ) = - R ( Y , X )$ ; confidence 0.998
+
47. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202106.png ; $( X , A _ { N } )$ ; confidence 0.760
  
48. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009066.png ; $\Lambda = O [ [ T ] ]$ ; confidence 0.968
+
48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210111.png ; $\theta _ { n } = \theta + h / \sqrt { n }$ ; confidence 0.760
  
49. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009085.png ; $( 1 + T ) x = \gamma x$ ; confidence 0.986
+
49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170308.png ; $X \times I ^ { 2 }$ ; confidence 0.760
  
50. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090130.png ; $\mu _ { p } ( K / k ) > 0$ ; confidence 0.539
+
50. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230178.png ; $f _ { 1 } , \dots , f _ { k }$ ; confidence 0.760
  
51. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001061.png ; $a \neq b \in C ^ { n }$ ; confidence 0.499
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240517.png ; $V _ { j j ^ { \prime } } = Z _ { 3 j } ^ { \prime } Z _ { 3 j }$ ; confidence 0.760
  
52. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100180.png ; $\{ 1 , \ldots , n \}$ ; confidence 0.577
+
52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035028.png ; $= \lambda \operatorname { lim } _ { N \rightarrow \infty } \sum _ { t = 1 } ^ { N } E \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ( \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ) ^ { T }$ ; confidence 0.760
  
53. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020110.png ; $\| X \| _ { * } \leq 1$ ; confidence 0.496
+
53. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016035.png ; $R = C ^ { \infty } ( \Omega ) \nmid I _ { S }$ ; confidence 0.760
  
54. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002016.png ; $e ^ { i \vartheta }$ ; confidence 0.765
+
54. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023019.png ; $20$ ; confidence 0.760
  
55. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020205.png ; $c _ { 1 } = c _ { 1 } ( c )$ ; confidence 0.987
+
55. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211046.png ; $j , r = 1 , \dots , m$ ; confidence 0.759
  
56. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j1300403.png ; $P _ { L } ( \square )$ ; confidence 0.944
+
56. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232070.png ; $b \leq c \leq d , e$ ; confidence 0.759
  
57. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004092.png ; $\alpha _ { 2 } , 2 = 1$ ; confidence 0.693
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008051.png ; $= \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }$ ; confidence 0.759
  
58. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001011.png ; $d \alpha ( Z , X ) = 0$ ; confidence 0.996
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040014.png ; $C ( G )$ ; confidence 0.759
  
59. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005066.png ; $f \circ g ( P ^ { 1 } )$ ; confidence 0.901
+
59. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520244.png ; $d _ { i } \times d _ { j }$ ; confidence 0.759
  
60. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002068.png ; $x = \mathfrak { X }$ ; confidence 0.111
+
60. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019043.png ; $O ( N ^ { 2 d } )$ ; confidence 0.759
  
61. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002069.png ; $y = \mathfrak { y }$ ; confidence 0.450
+
61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060106.png ; $\rho _ { \text { atom } } ^ { TF }$ ; confidence 0.759
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167032.png ; $a 1 , \dots , a _ { x }$ ; confidence 0.193
+
62. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180393.png ; $q _ { 1 } + \ldots + q _ { m }$ ; confidence 0.759
  
63. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300508.png ; $N \simeq 10 ^ { 19 }$ ; confidence 0.998
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c 0$ ; confidence 0.759
  
64. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010053.png ; $z _ { j } ^ { \prime }$ ; confidence 0.988
+
64. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006017.png ; $\| A \| _ { 1 } = \operatorname { max } _ { i } \sum _ { j } | a _ { i j } |$ ; confidence 0.759
  
65. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012039.png ; $[ - 1 / 2 , + \infty ]$ ; confidence 1.000
+
65. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001080.png ; $C _ { 1 } N ^ { n + ( n - 1 ) / 2 } \leq \| S _ { H _ { N } } \| \leq C _ { 2 } N ^ { n + ( n - 1 ) / 2 }$ ; confidence 0.759
  
66. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012035.png ; $x \in ( 0 , \infty )$ ; confidence 0.972
+
66. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001033.png ; $Z ^ { - 1 } ( x ( z ) ) = x ( n )$ ; confidence 0.759
  
67. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840121.png ; $L \cap L ^ { \perp }$ ; confidence 0.987
+
67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005014.png ; $f : U \rightarrow C$ ; confidence 0.759
  
68. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840159.png ; $z _ { 0 } \neq z _ { 0 }$ ; confidence 0.572
+
68. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026049.png ; $y \notin F ( \partial U )$ ; confidence 0.759
  
69. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840319.png ; $J = J ^ { * } = J ^ { - 1 }$ ; confidence 0.989
+
69. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003031.png ; $\alpha \square \alpha ^ { * }$ ; confidence 0.759
  
70. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840238.png ; $[ p ( A ) x , x ] \geq 0$ ; confidence 0.974
+
70. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025010.png ; $\beta ^ { T } = ( \beta _ { 1 } , \dots , \beta _ { p } )$ ; confidence 0.759
  
71. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840262.png ; $\Delta \in R _ { A }$ ; confidence 0.977
+
71. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520355.png ; $( \exists g ) ( \forall \phi ) ( \exists f ) ( \forall x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.759
  
72. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840219.png ; $[ p ( T ) x , x ] \geq 0$ ; confidence 0.939
+
72. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020176.png ; $H _ { 0 } ^ { 2 }$ ; confidence 0.759
  
73. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013023.png ; $2 ^ { i + 1 } ( n + 1 ) - 3$ ; confidence 0.997
+
73. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002018.png ; $\| x \| ^ { 2 } \leq \| x ^ { 2 } + y ^ { 2 } \|$ ; confidence 0.759
  
74. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120020/k12002010.png ; $c _ { 1 } ( M ) _ { R } < 0$ ; confidence 0.560
+
74. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327011.png ; $\overline { p } = p$ ; confidence 0.759
  
75. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003023.png ; $c _ { 1 } ( M ) _ { R } > 0$ ; confidence 0.629
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028052.png ; $D ; \subset C ^ { 1 }$ ; confidence 0.759
  
76. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200309.png ; $c _ { 1 } ( M ) _ { R } = 0$ ; confidence 0.534
+
76. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017070.png ; $\delta _ { A , B } ( X ) \in I$ ; confidence 0.758
  
77. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702048.png ; $H ^ { i } ( X , F _ { n } )$ ; confidence 0.938
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043047.png ; $[ m ] _ { q } ! = [ m ] _ { q } [ m - 1 ] _ { q } \ldots [ 1 ] _ { q }$ ; confidence 0.758
  
78. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702023.png ; $( Z / l ^ { n } Z ) _ { X }$ ; confidence 0.914
+
78. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029068.png ; $f ( q ) = O ( 1 / q ^ { 2 } )$ ; confidence 0.758
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011100/a01110019.png ; $\alpha , b , c \in A$ ; confidence 0.778
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052038.png ; $B _ { + } = B _ { c } + \frac { ( y - B _ { c } s ) s ^ { T } } { s ^ { T } s }$ ; confidence 0.758
  
80. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002062.png ; $x ^ { - } = x \wedge e$ ; confidence 0.821
+
80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420128.png ; $SL _ { q } ( 2 )$ ; confidence 0.758
  
81. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c1104003.png ; $\{ G ; , \preceq \}$ ; confidence 0.894
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022050.png ; $S _ { C } ( D ) = k$ ; confidence 0.758
  
82. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002072.png ; $| x | \wedge | y | = e$ ; confidence 0.893
+
82. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001053.png ; $F \in \operatorname { Aut } _ { R } R [ X ]$ ; confidence 0.758
  
83. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493
+
83. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232702.png ; $A \rightarrow \overline { A }$ ; confidence 0.758
  
84. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003095.png ; $E = ( \Omega , F , P )$ ; confidence 0.999
+
84. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005091.png ; $z _ { 2 } \neq z _ { 3 }$ ; confidence 0.758
  
85. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004037.png ; $H \subseteq X ( G )$ ; confidence 0.994
+
85. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200404.png ; $f _ { j } : \Omega \rightarrow R ^ { d }$ ; confidence 0.758
  
86. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700044.png ; $( \lambda x M ) x = M$ ; confidence 0.876
+
86. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005081.png ; $\mu = \frac { y ^ { T } H y \cdot s ^ { T } B s } { ( s ^ { T } y ) ^ { 2 } }$ ; confidence 0.758
  
87. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004092.png ; $\rho _ { R } = 0.125$ ; confidence 0.992
+
87. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003041.png ; $I _ { 0 } = \{ ( u _ { j } ) _ { j \in N }$ ; confidence 0.758
  
88. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006066.png ; $h ^ { I I } ( z ) ^ { - 1 }$ ; confidence 0.797
+
88. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005066.png ; $\operatorname { Ker } D _ { A } / \operatorname { Ran } D _ { A } = \operatorname { Ker } A \oplus ( X / \operatorname { Ran } A )$ ; confidence 0.758
  
89. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007025.png ; $r \geq | \lambda |$ ; confidence 0.587
+
89. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230175.png ; $\sigma ^ { 2 k ^ { * } } [ E ( L ) ( Z ^ { 2 k } ) ] = \sigma ^ { k + 1 ^ { * } } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ]$ ; confidence 0.758
  
90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007017.png ; $v _ { t } + 1 = L _ { v t }$ ; confidence 0.165
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018024.png ; $L$ ; confidence 0.758
  
91. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007030.png ; $\{ i : m _ { - } i > 0 \}$ ; confidence 0.994
+
91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060186.png ; $S ( k ) = f ( - k ) / f ( k )$ ; confidence 0.758
  
92. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009041.png ; $\Gamma ( T ^ { * } M )$ ; confidence 0.965
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012058.png ; $s > 2$ ; confidence 0.758
  
93. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004011.png ; $L ( x , y ) z : = [ x y z ]$ ; confidence 0.966
+
93. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004098.png ; $x , \xi p _ { m } ( x , \xi )$ ; confidence 0.758
  
94. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010089.png ; $\sqrt { - \Delta }$ ; confidence 1.000
+
94. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l05754062.png ; $C _ { + }$ ; confidence 0.758
  
95. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010047.png ; $1 / 2 < \gamma < 3 / 2$ ; confidence 0.876
+
95. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040117.png ; $G ^ { S }$ ; confidence 0.758
  
96. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010097.png ; $H = - \Delta + V ( x )$ ; confidence 0.999
+
96. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110107.png ; $Q [ K ]$ ; confidence 0.758
  
97. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010036.png ; $R _ { \Gamma , n } = 1$ ; confidence 0.918
+
97. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004027.png ; $X \times W$ ; confidence 0.757
  
98. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005016.png ; $\Lambda _ { k } ( a )$ ; confidence 0.962
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a01246092.png ; $f = ( f _ { 1 } , \dots , f _ { n } )$ ; confidence 0.757
  
99. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020870/c02087027.png ; $\omega \in C ^ { x }$ ; confidence 0.600
+
99. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002073.png ; $\varphi ( n ) = n - \frac { n } { p _ { 1 } } - \ldots - \frac { n } { p _ { k } } +$ ; confidence 0.757
  
100. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003036.png ; $0 < \alpha < \pi / 2$ ; confidence 0.998
+
100. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021082.png ; $L$ ; confidence 0.757
  
101. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012031.png ; $V ( \hat { K } _ { p } )$ ; confidence 0.171
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029082.png ; $Q _ { id } = Q \times S ^ { 1 } \rightarrow \Sigma \times S ^ { 1 }$ ; confidence 0.757
  
102. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120197.png ; $( F / M ( t ) ) \cong G$ ; confidence 0.689
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300206.png ; $\operatorname { sp } ( J , x )$ ; confidence 0.757
  
103. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013062.png ; $V ( \hat { Q } _ { p } )$ ; confidence 0.299
+
103. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012014.png ; $x \in \Sigma ^ { * }$ ; confidence 0.757
  
104. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010011.png ; $\alpha \in S ^ { 1 }$ ; confidence 0.853
+
104. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110140/k1101403.png ; $L$ ; confidence 0.757
  
105. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170191.png ; $\tau \in Wh ( \pi )$ ; confidence 0.397
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180122.png ; $R \subseteq \square ^ { n } U$ ; confidence 0.757
  
106. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019035.png ; $x _ { k + 1 } = A x _ { k }$ ; confidence 0.805
+
106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003066.png ; $\hat { f } ( - 2 \pi w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { 1 } e ^ { - 2 \pi i w t } ( Z f ) ( t , w ) d t$ ; confidence 0.757
  
107. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392019.png ; $\alpha , \beta > 0$ ; confidence 0.998
+
107. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080141.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) ) \oplus \operatorname { Im } ( I - F ^ { \prime } ( c ) ) = X$ ; confidence 0.757
  
108. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001029.png ; $p \in ( 0 , \infty )$ ; confidence 1.000
+
108. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302102.png ; $f \in L _ { C } ^ { 1 } ( G )$ ; confidence 0.757
  
109. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003038.png ; $\Psi ( x , \theta )$ ; confidence 0.994
+
109. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201106.png ; $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$ ; confidence 0.757
  
110. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001024.png ; $d _ { i } = c ( x _ { i } )$ ; confidence 0.991
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220184.png ; $L ^ { * } ( h ^ { 2 } ( X ) , s ) _ { s = 1 }$ ; confidence 0.757
  
111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001055.png ; $y _ { i } = f ( x _ { i } )$ ; confidence 0.820
+
111. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011018.png ; $\sum _ { j \in I } f ( x _ { i j } ) < \infty$ ; confidence 0.757
  
112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007014.png ; $M ( P Q ) = M ( P ) M ( Q )$ ; confidence 0.998
+
112. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033830/d03383074.png ; $S _ { \mu }$ ; confidence 0.757
  
113. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007051.png ; $m ( P ) \geq \infty$ ; confidence 0.448
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015330/b01533015.png ; $d < b$ ; confidence 0.757
  
114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009031.png ; $x \mapsto e ^ { T x }$ ; confidence 0.193
+
114. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002011.png ; $e ^ { z _ { 1 } + z _ { 2 } } = e ^ { z _ { 1 } } e ^ { z _ { 2 } }$ ; confidence 0.757
  
115. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847054.png ; $P ( \varphi ) _ { 2 }$ ; confidence 0.966
+
115. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008032.png ; $k , l \in N _ { 0 }$ ; confidence 0.757
  
116. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011024.png ; $\phi = \phi ( x , t )$ ; confidence 0.999
+
116. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005059.png ; $H _ { k + 1 } = H _ { k } + \beta _ { k } u ^ { k } ( u ^ { k } ) ^ { T } + \gamma _ { k } v ^ { k } ( v ^ { k } ) ^ { T }$ ; confidence 0.757
  
117. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130110.png ; $\mu _ { 2 } = \gamma$ ; confidence 0.984
+
117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065031.png ; $\operatorname { lim } _ { n \rightarrow \infty } \phi _ { n } ^ { * } ( z ) = D _ { \mu } ( z ) ^ { - 1 }$ ; confidence 0.757
  
118. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130131.png ; $\delta \approx 0$ ; confidence 0.999
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006064.png ; $G _ { R }$ ; confidence 0.757
  
119. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014021.png ; $j _ { n } ( \zeta ) - 1$ ; confidence 0.992
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100107.png ; $- x$ ; confidence 0.756
  
120. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140117.png ; $Q = \| q _ { p s , i } \|$ ; confidence 0.824
+
120. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p1301207.png ; $s ( D )$ ; confidence 0.756
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495
+
121. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035012.png ; $Z ^ { t - 1 } = \{ y ( t - 1 ) , u ( t - 1 ) , \dots , y ( 0 ) , u ( 0 ) \}$ ; confidence 0.756
  
122. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021020.png ; $M \in K ^ { \gamma }$ ; confidence 0.288
+
122. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011096.png ; $- \frac { 1 } { k + d n _ { k } } \cdot [ ( i + d ) \mu ( i , m ) - ( i + d + 1 ) \mu ( i + 1 , m ) ] = 0$ ; confidence 0.756
  
123. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019032.png ; $m _ { k } = L ( f _ { k } )$ ; confidence 0.998
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032086.png ; $k \operatorname { log } m \leq i \operatorname { log } n < ( k + 1 ) \operatorname { log } r$ ; confidence 0.756
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m1301907.png ; $L ( x ^ { k } ) = m _ { k }$ ; confidence 0.693
+
124. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010018.png ; $P ( K ) ^ { * }$ ; confidence 0.756
  
125. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023056.png ; $v _ { j } \in \Sigma$ ; confidence 0.698
+
125. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086360/s086360140.png ; $k = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.756
  
126. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026035.png ; $( \lambda , \rho )$ ; confidence 1.000
+
126. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024036.png ; $E \times ( )$ ; confidence 0.756
  
127. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260219.png ; $x _ { x } \leq y _ { x }$ ; confidence 0.659
+
127. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
  
128. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180116.png ; $\gamma ( x ) \vee x$ ; confidence 0.976
+
128. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029052.png ; $G = \text { Coker } ( \partial )$ ; confidence 0.756
  
129. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012030.png ; $z \in \Sigma ^ { * }$ ; confidence 0.977
+
129. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010018.png ; $A _ { i } \cap A _ { j } = \emptyset$ ; confidence 0.756
  
130. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012014.png ; $x \in \Sigma ^ { * }$ ; confidence 0.757
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012074.png ; $t | \leq \pi$ ; confidence 0.756
  
131. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002048.png ; $\alpha \in [ 1,2 )$ ; confidence 0.999
+
131. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006010.png ; $\frac { \partial ^ { 2 } u ( t , x ) } { \partial t ^ { 2 } } - a ^ { 2 } \frac { \partial ^ { 2 } u ( t , x ) } { \partial x ^ { 2 } } = f ( t , x )$ ; confidence 0.756
  
132. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002032.png ; $\alpha \in E ^ { * }$ ; confidence 0.998
+
132. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021073.png ; $( s _ { 1 } , \dots , s _ { k } , l _ { m } )$ ; confidence 0.756
  
133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002079.png ; $L _ { s } ( E ^ { * } , E )$ ; confidence 0.454
+
133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020095.png ; $( n / ( 2 e ( m + n ) ) ) ^ { n }$ ; confidence 0.756
  
134. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002012.png ; $\theta \in E ^ { * }$ ; confidence 0.996
+
134. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029038.png ; $T : L ^ { X } \rightarrow L$ ; confidence 0.756
  
135. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003034.png ; $- T \Delta w ( x , y )$ ; confidence 0.999
+
135. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120090/i1200901.png ; $( M ^ { 2 n } , \omega )$ ; confidence 0.756
  
136. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n1200605.png ; $F M \rightarrow M$ ; confidence 0.623
+
136. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013012.png ; $( L _ { 1 } , L _ { 2 } ) = ( S _ { 1 } \Lambda S _ { 1 } ^ { - 1 } , S _ { 2 } \Lambda ^ { t } S _ { 2 } ^ { - 1 } )$ ; confidence 0.756
  
137. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663027.png ; $0 < \alpha _ { i } < 1$ ; confidence 0.994
+
137. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007013.png ; $u \in Z G$ ; confidence 0.756
  
138. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n13007012.png ; $m ( A \cup B ) - m ( B )$ ; confidence 0.999
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022080/c0220803.png ; $x _ { S }$ ; confidence 0.756
  
139. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n13007026.png ; $m ( A \cup B ) = m ( A )$ ; confidence 0.999
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018023.png ; $J _ { E } \subset I _ { E }$ ; confidence 0.755
  
140. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010029.png ; $c _ { i } \neq c _ { j }$ ; confidence 0.580
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015046.png ; $( G ) X$ ; confidence 0.755
  
141. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520159.png ; $e _ { i } ^ { N _ { i j } }$ ; confidence 0.149
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070170.png ; $C ( P )$ ; confidence 0.755
  
142. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520157.png ; $\lambda - \alpha$ ; confidence 0.399
+
142. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050104.png ; $( u , v ) \mapsto u _ { x } ( v )$ ; confidence 0.755
  
143. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520324.png ; $n , m = 0,1 , \dots ,$ ; confidence 0.508
+
143. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007093.png ; $F : C ^ { * } \otimes _ { k } C \rightarrow Ab$ ; confidence 0.755
  
144. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520158.png ; $\alpha _ { j } \in K$ ; confidence 0.197
+
144. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301106.png ; $( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) + m _ { 0 } ^ { 2 } c ^ { 2 } =$ ; confidence 0.755
  
145. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752075.png ; $e _ { j } ^ { x _ { i j } }$ ; confidence 0.250
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034074.png ; $\| f \| \leq 2 f ( z _ { 0 } )$ ; confidence 0.755
  
146. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001034.png ; $O ( \varepsilon )$ ; confidence 0.995
+
146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006085.png ; $T _ { A } \xi$ ; confidence 0.755
  
147. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061190/l06119016.png ; $0 < \lambda \leq 1$ ; confidence 0.989
+
147. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030166.png ; $\phi * ( \text { ind } ( D ) )$ ; confidence 0.755
  
148. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010122.png ; $\vec { H } ^ { 1 } ( D )$ ; confidence 0.564
+
148. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003046.png ; $N ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$ ; confidence 0.755
  
149. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010153.png ; $\tilde { X } ( \xi )$ ; confidence 0.225
+
149. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013020.png ; $m _ { i j } = 0$ ; confidence 0.755
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160049.png ; $n = r _ { 1 } + 2 r _ { 2 }$ ; confidence 0.918
+
150. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755
  
151. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o13002023.png ; $M ( r _ { 1 } , r _ { 2 } )$ ; confidence 0.890
+
151. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050112.png ; $P _ { \theta } ( \| T _ { N } - \theta \| > \epsilon _ { N } )$ ; confidence 0.755
  
152. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008060.png ; $f _ { 1 } - f _ { 2 } : = f$ ; confidence 0.998
+
152. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064058.png ; $k$ ; confidence 0.755
  
153. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006050.png ; $C _ { 0 } ^ { \infty }$ ; confidence 0.931
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070129.png ; $n = 1.3 .5 . . ( 2 k - 1 )$ ; confidence 0.755
  
154. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p1201109.png ; $| C ( 20 ) | = 510489$ ; confidence 0.997
+
154. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007037.png ; $| \gamma | = r + \sum _ { j = 1 } ^ { s } p _ { j }$ ; confidence 0.755
  
155. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013012.png ; $( 1 + \sqrt { 5 } ) / 2$ ; confidence 0.518
+
155. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003055.png ; $\{ x y z \} = x \circ ( y ^ { * } \circ z ) + z \circ ( y ^ { * } \circ x ) - ( x \circ z ) \circ y ^ { * }$ ; confidence 0.755
  
156. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201403.png ; $E ( a _ { 0 } , a _ { 1 } )$ ; confidence 0.933
+
156. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008037.png ; $\delta ( w | v )$ ; confidence 0.755
  
157. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755
+
157. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300501.png ; $m > 4$ ; confidence 0.755
  
158. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007082.png ; $E \subset \Omega$ ; confidence 0.995
+
158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006055.png ; $= \int _ { 0 } ^ { \infty } | ( V \phi | \lambda ) | ^ { 2 } ( \frac { 1 } { \zeta - \lambda - i \epsilon } - \frac { 1 } { \zeta - \lambda + i \epsilon } ) d \lambda =$ ; confidence 0.755
  
159. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007086.png ; $u | _ { E } = - \infty$ ; confidence 0.980
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b0167303.png ; $s = 1,2 , \dots$ ; confidence 0.755
  
160. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100180.png ; $f ^ { - 1 } ( K ) \cap T$ ; confidence 0.973
+
160. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024083.png ; $t + \theta < t$ ; confidence 0.755
  
161. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015048.png ; $\partial \Omega$ ; confidence 1.000
+
161. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002068.png ; $| x y | \preceq | x | | y | | x |$ ; confidence 0.754
  
162. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012013.png ; $L _ { 1 } \geq L _ { 2 }$ ; confidence 0.905
+
162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202803.png ; $C _ { 2 } \rightarrow C _ { 1 } \rightarrow C _ { 0 }$ ; confidence 0.754
  
163. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452021.png ; $F = L \backslash P$ ; confidence 0.999
+
163. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g0433208.png ; $u \in C _ { 0 } ^ { \infty } ( G )$ ; confidence 0.754
  
164. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754803.png ; $( p \& q ) \supset p$ ; confidence 0.971
+
164. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001039.png ; $W _ { \infty }$ ; confidence 0.754
  
165. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754804.png ; $( p \& q ) \supset q$ ; confidence 0.986
+
165. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017046.png ; $K \subset R$ ; confidence 0.754
  
166. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014055.png ; $\psi ( \gamma ) > 0$ ; confidence 0.999
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007057.png ; $> - 1$ ; confidence 0.754
  
167. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002041.png ; $N P \Varangle BQP$ ; confidence 0.087
+
167. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009052.png ; $\theta _ { N } ( f ) = \varphi$ ; confidence 0.754
  
168. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q1200106.png ; $\varphi _ { i } ( f )$ ; confidence 0.958
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180148.png ; $D$ ; confidence 0.754
  
169. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001088.png ; $s \mapsto \pi ( s )$ ; confidence 0.886
+
169. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008035.png ; $b \in \partial \Delta$ ; confidence 0.754
  
170. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001075.png ; $( G , \pi , \tau , J )$ ; confidence 0.996
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040615.png ; $h = \operatorname { mng } s _ { P } , \mathfrak { N }$ ; confidence 0.754
  
171. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003042.png ; $L ( f ) = 1 \otimes f$ ; confidence 0.991
+
171. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040440/f04044029.png ; $a \leq 0$ ; confidence 0.754
  
172. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005049.png ; $D f ( x ^ { k } ) \neq 0$ ; confidence 0.981
+
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010021.png ; $( [ L , A ] F ) _ { N } ( X ) =$ ; confidence 0.754
  
173. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300407.png ; $K \in [ 1 , \infty )$ ; confidence 0.991
+
173. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017021.png ; $\{ \varphi _ { i } \} _ { l = 1 } ^ { k - 1 }$ ; confidence 0.754
  
174. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005079.png ; $h = F \circ f ^ { - 1 }$ ; confidence 0.926
+
174. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013029.png ; $SP ( n )$ ; confidence 0.754
  
175. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005091.png ; $z _ { 2 } \neq z _ { 3 }$ ; confidence 0.758
+
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031033.png ; $\| f \| ^ { 2 } = \sum _ { \alpha _ { l } \leq k } \| D ^ { \alpha } f \| ^ { 2 } L _ { 2 }$ ; confidence 0.754
  
176. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005057.png ; $\alpha \subset T$ ; confidence 0.964
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010149.png ; $A _ { y }$ ; confidence 0.754
  
177. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008038.png ; $E [ W _ { p } ] _ { NP } =$ ; confidence 0.386
+
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012014.png ; $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ ; confidence 0.754
  
178. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007021.png ; $f ( y ) = ( f , K ( , y ) )$ ; confidence 0.970
+
178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202002.png ; $\xi = ker \alpha$ ; confidence 0.754
  
179. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007045.png ; $B ( x , y ) \in H _ { + }$ ; confidence 0.994
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054097.png ; $\{ a , b \} _ { \infty }$ ; confidence 0.753
  
180. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008048.png ; $\{ \phi j ( z ) \}$ ; confidence 0.543
+
180. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007025.png ; $E [ m , s ] A ( f ) \Omega \neq 0$ ; confidence 0.753
  
181. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080136.png ; $H _ { 0 } = L ^ { 2 } ( D )$ ; confidence 0.997
+
181. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005048.png ; $Y ( v , x ) 1$ ; confidence 0.753
  
182. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008047.png ; $K _ { D } ( z , \zeta )$ ; confidence 0.965
+
182. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017017.png ; $K _ { j } \in R ^ { n \times n } , K _ { 0 } = l , \sum _ { j = 0 } ^ { \infty } \| K _ { j } \| ^ { 2 } < \infty$ ; confidence 0.753
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330109.png ; $f ( e ^ { i \theta } )$ ; confidence 0.999
+
183. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190110.png ; $m \in S$ ; confidence 0.753
  
184. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232017.png ; $K = \overline { H }$ ; confidence 0.998
+
184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020161.png ; $X \neq 0$ ; confidence 0.753
  
185. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232031.png ; $r \leq \rho \leq R$ ; confidence 0.999
+
185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023088.png ; $P ( | XX ^ { \prime } | \neq 0 ) = 1$ ; confidence 0.753
  
186. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002022.png ; $h ( q , \dot { q } , t )$ ; confidence 0.999
+
186. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015036.png ; $n + 2$ ; confidence 0.753
  
187. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016030.png ; $R _ { nd } ( \Omega )$ ; confidence 0.950
+
187. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
  
188. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981
+
188. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596103.png ; $q = ( r _ { 1 } , \dots , r _ { N } )$ ; confidence 0.753
  
189. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004035.png ; $( 2 g ) \times ( 2 g )$ ; confidence 0.999
+
189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200206.png ; $( P D )$ ; confidence 0.753
  
190. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011030.png ; $w \in S _ { \infty }$ ; confidence 0.894
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026057.png ; $A ^ { N }$ ; confidence 0.753
  
191. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004034.png ; $K _ { \lambda \mu }$ ; confidence 0.840
+
191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006030.png ; $T _ { y } Y = V _ { y } Y + \Gamma ( y )$ ; confidence 0.753
  
192. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005027.png ; $z _ { j } = S ( w _ { j } )$ ; confidence 0.967
+
192. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008012.png ; $V _ { t } = \mu _ { x } + t d t S - P d t +$ ; confidence 0.753
  
193. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034023.png ; $M = F \times [ 0,1 ]$ ; confidence 1.000
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149074.png ; $x ^ { \prime }$ ; confidence 0.753
  
194. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015035.png ; $g ( S ) \cap S \neq 0$ ; confidence 0.645
+
194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002013.png ; $c ^ { \alpha } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { \alpha } ( x )$ ; confidence 0.753
  
195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041037.png ; $b _ { x } , x - k \neq 0$ ; confidence 0.328
+
195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026014.png ; $E f ( X _ { n } ) \rightarrow E f ( w ) , \quad n \rightarrow \infty$ ; confidence 0.753
  
196. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017039.png ; $f ( d ) = \sum d _ { l }$ ; confidence 0.397
+
196. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339014.png ; $\delta f ( x _ { 0 } , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h , \quad f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y )$ ; confidence 0.752
  
197. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017096.png ; $\sum s _ { j } x _ { j }$ ; confidence 0.878
+
197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014070.png ; $h _ { j } \in Gl ( v _ { j } , K )$ ; confidence 0.752
  
198. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072980/p07298017.png ; $t _ { 0 } \in \Gamma$ ; confidence 0.742
+
198. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021890/c02189013.png ; $r = 2$ ; confidence 0.752
  
199. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020047.png ; $\sigma \in S _ { y }$ ; confidence 0.353
+
199. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y1200107.png ; $R _ { 13 } = ( 1 \otimes _ { k } \tau _ { V , V } ) ( R \otimes _ { k } 1 ) ( 1 \otimes _ { k } \tau _ { V , V } )$ ; confidence 0.752
  
200. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021024.png ; $\lambda \leq \mu$ ; confidence 1.000
+
200. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015051.png ; $\Delta$ ; confidence 0.752
  
201. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048038.png ; $H _ { S } ^ { j } ( D ) = 0$ ; confidence 0.416
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005058.png ; $u \in C ( [ 0 , T ] ; X ) \cap C ^ { 1 } ( ( 0 , T ] ; X )$ ; confidence 0.752
  
202. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050015.png ; $f _ { k } : = | F _ { k } |$ ; confidence 0.998
+
202. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q1300306.png ; $\alpha | 0 \rangle + \beta | 1 \rangle$ ; confidence 0.752
  
203. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230145.png ; $f ( X X ^ { \prime } )$ ; confidence 0.988
+
203. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300607.png ; $\alpha _ { 1 } \geq d ^ { m - 1 } ( d - 1 )$ ; confidence 0.752
  
204. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202303.png ; $\Lambda \in O ( n )$ ; confidence 0.996
+
204. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070143.png ; $R : G _ { q } \rightarrow U _ { q } ( g )$ ; confidence 0.752
  
205. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202302.png ; $X _ { i } = X \Lambda$ ; confidence 0.368
+
205. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007042.png ; $L ^ { \infty }$ ; confidence 0.752
  
206. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510106.png ; $\gamma ( F ( u ) ) = K$ ; confidence 1.000
+
206. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050153.png ; $( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( X / \operatorname { Ran } D _ { A } ^ { 1 } )$ ; confidence 0.752
  
207. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051089.png ; $g ( u ) = \sigma ( u )$ ; confidence 0.996
+
207. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752
  
208. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051018.png ; $F ( u ) = \emptyset$ ; confidence 0.981
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017310/b01731024.png ; $y ^ { \prime }$ ; confidence 0.752
  
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054033.png ; $y ( a ) = x _ { 21 } ( a )$ ; confidence 0.699
+
209. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006079.png ; $L _ { 1 } , \ldots , L _ { k }$ ; confidence 0.752
  
210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054060.png ; $SL _ { \times } ( F )$ ; confidence 0.077
+
210. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160165.png ; $( w \in S )$ ; confidence 0.752
  
211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054019.png ; $x y x ^ { - 1 } y ^ { - 1 }$ ; confidence 0.995
+
211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036017.png ; $1$ ; confidence 0.752
  
212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026061.png ; $\partial _ { s }$ ; confidence 0.939
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105026.png ; $f : X \rightarrow S$ ; confidence 0.752
  
213. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059022.png ; $z \in ( 0 , \infty )$ ; confidence 0.999
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a0113707.png ; $f ( a )$ ; confidence 0.752
  
214. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028026.png ; $D ^ { 2 } X \approx X$ ; confidence 0.999
+
214. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080123.png ; $T / T _ { c } \rightarrow 1$ ; confidence 0.752
  
215. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
+
215. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006057.png ; $s _ { j } > 0$ ; confidence 0.751
  
216. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062057.png ; $m _ { 0 } ( \lambda )$ ; confidence 0.968
+
216. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005029.png ; $R < R _ { c }$ ; confidence 0.751
  
217. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062022.png ; $y ( 0 , \lambda ) = 0$ ; confidence 1.000
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060102.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = \lambda$ ; confidence 0.751
  
218. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032076.png ; $N = A ^ { \gamma } | s$ ; confidence 0.827
+
218. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c02245012.png ; $\xi _ { 1 }$ ; confidence 0.751
  
219. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033065.png ; $n \leq 2,000,000$ ; confidence 0.990
+
219. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180328.png ; $\tau _ { 3 } : \otimes ^ { 3 } E \rightarrow \otimes ^ { 3 } E$ ; confidence 0.751
  
220. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034044.png ; $\omega ( v , J v ) > 0$ ; confidence 0.983
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210120.png ; $1$ ; confidence 0.751
  
221. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340101.png ; $A \in H _ { 2 } ( M ; Z )$ ; confidence 0.552
+
221. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011028.png ; $\Delta G _ { n } ( x ) \equiv \mu _ { n } ( x ) = \sum 1 _ { \{ f _ { i n } = x \} }$ ; confidence 0.751
  
222. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065027.png ; $\delta _ { \mu } > 0$ ; confidence 1.000
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302006.png ; $( x , y , z ) \rightarrow \{ x y z \}$ ; confidence 0.751
  
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065039.png ; $\mu ^ { \prime } > 0$ ; confidence 1.000
+
223. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016074.png ; $S = \Sigma ^ { * } - S$ ; confidence 0.751
  
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065019.png ; $H = \Phi _ { n } ^ { * }$ ; confidence 0.544
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050034.png ; $X = \{ \pi ( 1 ) , \ldots , \pi ( | X | ) \}$ ; confidence 0.751
  
225. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306507.png ; $\Phi _ { - 1 } ( z ) = 0$ ; confidence 0.998
+
225. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260100.png ; $P ( \theta , \mu _ { p _ { j } } )$ ; confidence 0.751
  
226. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005095.png ; $B \subseteq L ( H )$ ; confidence 0.990
+
226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014023.png ; $D _ { N } ( x , 1 ) = u ^ { n } + u ^ { - n } = e ^ { i n \alpha } + e ^ { - i n \alpha } =$ ; confidence 0.751
  
227. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050155.png ; $\alpha : = \pi ( A )$ ; confidence 0.702
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751
  
228. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005049.png ; $\Lambda ^ { k } ( X )$ ; confidence 0.989
+
228. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751
  
229. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050158.png ; $H = H ^ { 2 } ( S ^ { 3 } )$ ; confidence 0.719
+
229. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002038.png ; $l ( u ) = \operatorname { sup } \{ t \geq 0 : g + ( u ) \text { is defined } \}$ ; confidence 0.751
  
230. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003036.png ; $F _ { K } \circ \Phi$ ; confidence 0.631
+
230. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100153.png ; $z \in T$ ; confidence 0.751
  
231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006044.png ; $L ^ { 5 / 3 } ( R ^ { 3 } )$ ; confidence 0.869
+
231. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006012.png ; $T _ { n } f ( z ) = \sum _ { m = 0 } ^ { \infty } \gamma _ { n } ( m ) q ^ { m } ( z )$ ; confidence 0.751
  
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006093.png ; $0 \leq \lambda < 1$ ; confidence 0.998
+
232. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007045.png ; $A ( \alpha ^ { \prime } , \alpha 0 , k )$ ; confidence 0.751
  
233. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007018.png ; $\Gamma _ { 0 } ( p ) +$ ; confidence 0.992
+
233. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006028.png ; $\sigma _ { 1 } = \frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) | _ { E } , \sigma _ { 2 } = \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) | _ { E } , \gamma = \frac { 1 } { i } ( A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * } ) | _ { E } , \tilde { \gamma } = \frac { 1 } { i } ( A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 } ) | _ { E }$ ; confidence 0.751
  
234. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t1301005.png ; $\square _ { H } T$ ; confidence 0.979
+
234. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004073.png ; $f _ { i + 1 / 2 } = f ( u _ { i + 1 / 2 } ^ { n + 1 / 2 } )$ ; confidence 0.751
  
235. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013071.png ; $D ^ { b } ( \Lambda )$ ; confidence 0.926
+
235. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010096.png ; $SL ( 2 , O _ { K } )$ ; confidence 0.751
  
236. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014083.png ; $v \in N ^ { \wedge }$ ; confidence 0.211
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002017.png ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751
  
237. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015022.png ; $( C ( T ) ) \approx Z$ ; confidence 0.687
+
237. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090298.png ; $b ^ { + }$ ; confidence 0.751
  
238. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032078.png ; $h \in H ^ { \infty }$ ; confidence 0.985
+
238. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006019.png ; $T _ { n } ( L ) = \sum L ^ { \prime }$ ; confidence 0.751
  
239. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014047.png ; $T _ { \phi } = \{ 0 \}$ ; confidence 0.573
+
239. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010021.png ; $( t _ { 1 } , \dots , t _ { m } )$ ; confidence 0.751
  
240. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408027.png ; $\pi _ { N } ( X , A , * )$ ; confidence 0.914
+
240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024020.png ; $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$ ; confidence 0.751
  
241. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940806.png ; $x _ { 0 } \in A \cap B$ ; confidence 0.543
+
241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026020.png ; $P \{ X _ { n } \in G \} \rightarrow P \{ w \in G \}$ ; confidence 0.751
  
242. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021048.png ; $\alpha _ { N / 2 } - k$ ; confidence 0.618
+
242. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010110.png ; $( f _ { i } : X \rightarrow G A _ { i } ) _ { I }$ ; confidence 0.751
  
243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020093.png ; $z _ { j } | z _ { j } | = 1$ ; confidence 0.885
+
243. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013047.png ; $( T , . ) : T \rightarrow Y$ ; confidence 0.751
  
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200180.png ; $G _ { 1 } ( r ) \leq - B$ ; confidence 0.999
+
244. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005037.png ; $+ \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y$ ; confidence 0.750
  
245. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200189.png ; $0 < \kappa < \pi / 2$ ; confidence 0.991
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150138.png ; $k j \in N \cup \{ 0 \}$ ; confidence 0.750
  
246. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200207.png ; $G _ { 2 } ( r ) \leq - M$ ; confidence 0.994
+
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005010.png ; $P ( z ) = A ( z , \dots , z )$ ; confidence 0.750
  
247. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021059.png ; $GF ( q ) ^ { \gamma }$ ; confidence 0.354
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750
  
248. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v1300601.png ; $5 \longdiv { ( 2 ) }$ ; confidence 0.384
+
248. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006013.png ; $f ( k ) = | f ( k ) | e ^ { - i \delta ( k ) }$ ; confidence 0.750
  
249. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006021.png ; $5 \longdiv { ( n ) }$ ; confidence 0.272
+
249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014032.png ; $\omega ( \beta ) \nmid \sigma ^ { \prime } ( \beta )$ ; confidence 0.750
  
250. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005078.png ; $V _ { ( n ) } < \infty$ ; confidence 0.639
+
250. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040980/f04098026.png ; $M ^ { 4 }$ ; confidence 0.750
  
251. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005040.png ; $v \mapsto Y ( v , x )$ ; confidence 0.941
+
251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120230/b12023031.png ; $\Sigma V$ ; confidence 0.750
  
252. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020134.png ; $F = r \circ t ^ { - 1 }$ ; confidence 0.969
+
252. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300409.png ; $G$ ; confidence 0.750
  
253. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020197.png ; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629
+
253. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024040.png ; $H _ { x } ^ { S }$ ; confidence 0.750
  
254. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020100.png ; $y _ { 0 } = g ( x _ { 0 } )$ ; confidence 0.641
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240235.png ; $SS _ { e } = \sum _ { i = r + 1 } ^ { n } z _ { i } ^ { 2 }$ ; confidence 0.750
  
255. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004032.png ; $\Delta ( G ) \geq 8$ ; confidence 0.984
+
255. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004027.png ; $g = - \frac { \omega _ { 1 } + i \omega _ { 2 } } { \omega _ { 3 } } = \frac { \omega _ { 3 } } { \omega _ { 1 } - i \omega _ { 2 } } , \eta = g ^ { - 1 } \omega _ { 3 }$ ; confidence 0.750
  
256. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004029.png ; $\Delta ( G ) \leq 5$ ; confidence 0.998
+
256. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005095.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( V , W )$ ; confidence 0.750
  
257. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v1100603.png ; $\nu \in ( - 1,1 / 2 )$ ; confidence 0.999
+
257. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120104.png ; $R C \subseteq R N \subseteq Q _ { s } ( R )$ ; confidence 0.750
  
258. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011057.png ; $A ^ { 2 } \leq C ^ { 2 }$ ; confidence 0.997
+
258. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003089.png ; $\vec { x }$ ; confidence 0.749
  
259. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011041.png ; $( m l + U t , \pm b / 2 )$ ; confidence 0.616
+
259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048058.png ; $M = G / G 0$ ; confidence 0.749
  
260. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900152.png ; $H ( \zeta ) = H _ { p }$ ; confidence 0.997
+
260. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009023.png ; $F _ { \nu } ^ { \mu \nu } = S ^ { \mu }$ ; confidence 0.749
  
261. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690078.png ; $\phi ( T ) < \infty$ ; confidence 1.000
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023047.png ; $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$ ; confidence 0.749
  
262. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691018.png ; $H = L _ { 2 } ( X , \mu )$ ; confidence 0.998
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040127.png ; $\psi$ ; confidence 0.749
  
263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030141.png ; $\Sigma ( \Gamma )$ ; confidence 0.887
+
263. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005076.png ; $r + ( k ) = O ( 1 / k )$ ; confidence 0.749
  
264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003060.png ; $[ 0,1 ] ^ { \Gamma }$ ; confidence 0.999
+
264. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020085.png ; $\theta \approx 0,2784$ ; confidence 0.749
  
265. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030107.png ; $x _ { i } ^ { * } ( x ) = 0$ ; confidence 0.763
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006027.png ; $A u = \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u$ ; confidence 0.749
  
266. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030153.png ; $( B _ { X } * , w ^ { * } )$ ; confidence 0.937
+
266. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003072.png ; $T _ { vert } ^ { * } Y : = T ^ { * } Y / \pi ^ { * } ( T ^ { * } B )$ ; confidence 0.749
  
267. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001029.png ; $C ^ { \prime } = - 2 C$ ; confidence 0.955
+
267. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520492.png ; $\Lambda ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.749
  
268. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005047.png ; $D _ { \gamma } ^ { y }$ ; confidence 0.174
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027059.png ; $( N / K )$ ; confidence 0.749
  
269. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070106.png ; $C ^ { \prime } = 1$ ; confidence 0.999
+
269. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005026.png ; $x \in \Sigma ^ { i , j } ( f )$ ; confidence 0.749
  
270. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009091.png ; $R ( t ^ { \lambda } )$ ; confidence 0.998
+
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014038.png ; $v _ { i } \in V$ ; confidence 0.749
  
271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090344.png ; $\beta \in \Sigma$ ; confidence 0.946
+
271. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002099.png ; $Y _ { t } = B _ { \operatorname { min } } ( t , 1 )$ ; confidence 0.749
  
272. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090153.png ; $\Lambda ^ { + } ( n )$ ; confidence 0.997
+
272. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004023.png ; $K _ { 1 } \# - K _ { 2 }$ ; confidence 0.749
  
273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090406.png ; $d \lambda _ { \mu }$ ; confidence 0.794
+
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150201.png ; $\{ x _ { n } \} \subset D ( A )$ ; confidence 0.748
  
274. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011030.png ; $H ( u , v ) ( x , \xi ) =$ ; confidence 0.985
+
274. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006012.png ; $f ( 0 , k ) : = f ( k )$ ; confidence 0.748
  
275. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110210.png ; $G = G ^ { \sigma }$ ; confidence 0.956
+
275. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300306.png ; $v _ { x x } = \lambda v$ ; confidence 0.748
  
276. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110236.png ; $b \in S ( m _ { 2 } , G )$ ; confidence 0.620
+
276. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b110420103.png ; $\alpha ( x , \xi )$ ; confidence 0.748
  
277. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011037.png ; $u , v \in S ( R ^ { x } )$ ; confidence 0.546
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006069.png ; $G _ { 1 }$ ; confidence 0.748
  
278. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080205.png ; $T _ { S } \sim t _ { S }$ ; confidence 0.887
+
278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180173.png ; $( M \backslash a , M , M / a )$ ; confidence 0.748
  
279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017043.png ; $\omega ( G ) / Z ( G )$ ; confidence 0.986
+
279. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
  
280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017077.png ; $\iota \omega ( G )$ ; confidence 0.979
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007046.png ; $u ^ { \prime } \in C ^ { \alpha } ( [ 0 , T ] ; X ) \cap B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.748
  
281. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017031.png ; $\omega ( G ) \neq 1$ ; confidence 0.998
+
281. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003030.png ; $[ \alpha \square b ^ { * } , x \square y ^ { * } ] = \{ a b x \} \square y ^ { * } - x \square \{ y a b \}$ ; confidence 0.748
  
282. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009080.png ; $( C ^ { \prime } , C )$ ; confidence 0.985
+
282. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013026.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$ ; confidence 0.748
  
283. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009084.png ; $g \in C ^ { \prime }$ ; confidence 0.949
+
283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016057.png ; $f | _ { K } \in A | _ { K }$ ; confidence 0.748
  
284. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011024.png ; $g \in L ^ { 1 } ( \mu )$ ; confidence 0.998
+
284. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201707.png ; $\delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$ ; confidence 0.748
  
285. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w1301102.png ; $f \in L ^ { 1 } ( \mu )$ ; confidence 0.994
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050055.png ; $\alpha \in K$ ; confidence 0.748
  
286. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010048.png ; $( 0 , \kappa _ { i } )$ ; confidence 0.214
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233028.png ; $1 > 0$ ; confidence 0.748
  
287. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019023.png ; $A _ { k ^ { \prime } }$ ; confidence 0.165
+
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052085.png ; $= - \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.747
  
288. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w12019024.png ; $( u _ { k } , A u _ { l } )$ ; confidence 0.996
+
288. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304107.png ; $a \geq 0$ ; confidence 0.747
  
289. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001053.png ; $10.014 \times 1 =$ ; confidence 0.077
+
289. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005050.png ; $\sigma _ { T } ( A , X ) = \{ \lambda \in C ^ { n } : K ( A - \lambda , X )$ ; confidence 0.747
  
290. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010105.png ; $\sigma [ J , V ^ { j }$ ; confidence 0.290
+
290. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023570/c0235705.png ; $M \subset X$ ; confidence 0.747
  
291. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003024.png ; $( Z f ) ( t , w ) = f ( t )$ ; confidence 0.987
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556042.png ; $D ^ { * }$ ; confidence 0.747
  
292. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007053.png ; $Z A \rightarrow Z$ ; confidence 0.726
+
292. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520242.png ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.747
  
293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008057.png ; $\alpha \in N _ { 0 }$ ; confidence 0.992
+
293. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033015.png ; $\gamma \rightarrow \int _ { \gamma } \omega$ ; confidence 0.747
  
294. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110146.png ; $\alpha = a f ( 1 - a )$ ; confidence 0.460
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350295.png ; $i _ { \infty }$ ; confidence 0.747
  
295. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012031.png ; $| p ^ { ( k ) } ( \xi ) |$ ; confidence 0.953
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260127.png ; $A \{ X _ { 1 } , \dots , X _ { s _ { i } } \}$ ; confidence 0.747
  
296. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013040.png ; $( 1 , \theta _ { 0 } )$ ; confidence 0.987
+
296. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584061.png ; $\| G | ^ { 1 / 2 } x \|$ ; confidence 0.747
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
+
297. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018020.png ; $g ( x ) = \sum _ { y : y \geq x } f ( y ) \Leftrightarrow f ( x ) = \sum _ { y : y \geq x } \mu ( x , y ) g ( y )$ ; confidence 0.747
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
+
298. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016054.png ; $k ( \Phi ) = n _ { 1 }$ ; confidence 0.747
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013012.png ; $Q _ { 1 } = P _ { 1 }$ ; confidence 0.999
+
299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300100.png ; $\psi _ { i - 1 } ( A _ { i } ^ { x } )$ ; confidence 0.747
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838
+
300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s1200406.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { l } )$ ; confidence 0.747

Revision as of 00:10, 13 February 2020

List

1. a12026040.png ; $\mathfrak { Y } \in A ^ { S }$ ; confidence 0.762

2. c13007085.png ; $d > 1$ ; confidence 0.762

3. e0353108.png ; $\{ \omega \}$ ; confidence 0.762

4. l120100142.png ; $p = n f ( n - 2 )$ ; confidence 0.762

5. b12027048.png ; $\operatorname { lim } _ { t \rightarrow \infty } ( U ( t + h ) - U ( t ) ) = \frac { h } { E X _ { 1 } }$ ; confidence 0.762

6. l13005018.png ; $s ^ { ( k ) }$ ; confidence 0.762

7. r13013018.png ; $P _ { \sigma }$ ; confidence 0.762

8. m12003078.png ; $e = y - \vec { x } ^ { t } \vec { \theta }$ ; confidence 0.762

9. m120100142.png ; $( \tilde { G } , \tau ) / \Lambda$ ; confidence 0.762

10. c02691097.png ; $2 \epsilon$ ; confidence 0.761

11. g130040202.png ; $\operatorname { dist } ( T _ { x } , T _ { y } ) \leq C ( r | x - y | ) ^ { 1 - \epsilon }$ ; confidence 0.761

12. l12013066.png ; $p \notin S$ ; confidence 0.761

13. c12018021.png ; $N \subset M$ ; confidence 0.761

14. a01197023.png ; $\lambda _ { k }$ ; confidence 0.761

15. t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761

16. c021180103.png ; $S$ ; confidence 0.761

17. c130160154.png ; $( \operatorname { log } n ) ^ { O ( 1 ) }$ ; confidence 0.761

18. z12002013.png ; $F _ { x _ { 1 } }$ ; confidence 0.761

19. c12029053.png ; $\operatorname { Ker } ( \partial )$ ; confidence 0.761

20. j13003025.png ; $z \mapsto \{ a b z \}$ ; confidence 0.761

21. m1202308.png ; $( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761

22. d1201507.png ; $d , e \in D$ ; confidence 0.761

23. g12004047.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \in \Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.761

24. m12023052.png ; $- f _ { t } + ( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761

25. i051470126.png ; $a ^ { - 1 }$ ; confidence 0.761

26. s120320114.png ; $U = ( U , O ( U ) , \text { ev } )$ ; confidence 0.761

27. a13027046.png ; $T _ { N } : X _ { N } \rightarrow Y _ { N }$ ; confidence 0.761

28. a12023053.png ; $\Omega _ { r } = r \Omega$ ; confidence 0.761

29. t130140102.png ; $q R : Z ^ { n } \rightarrow Z$ ; confidence 0.761

30. a012200122.png ; $G \subset R ^ { x }$ ; confidence 0.761

31. s12034040.png ; $- 1 d$ ; confidence 0.761

32. a13031070.png ; $( Q _ { 2 } , \mu _ { 2 } )$ ; confidence 0.761

33. w130080212.png ; $M _ { g , n } + 1$ ; confidence 0.761

34. d12012021.png ; $U C$ ; confidence 0.760

35. m130140119.png ; $i , l = 1 , \dots , n$ ; confidence 0.760

36. w1201107.png ; $( x . \xi ) ^ { w } = ( x . D _ { x } + D _ { x } x ) / 2$ ; confidence 0.760

37. f12023035.png ; $\Omega ( M ) = \oplus _ { k } \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.760

38. j1300709.png ; $( \Delta )$ ; confidence 0.760

39. l13001051.png ; $v ^ { ( n - 1 ) / 2 }$ ; confidence 0.760

40. s12026065.png ; $\{ A , A _ { s } ^ { * } \} = \delta ( t - s ) , \{ A _ { t } , A _ { s } \} = \{ A _ { t } ^ { * } , A _ { s } ^ { * } \} = 0$ ; confidence 0.760

41. a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.760

42. b11087029.png ; $Ab$ ; confidence 0.760

43. b12052022.png ; $F ^ { \prime } ( x _ { c } ) s = - F ( x _ { c } )$ ; confidence 0.760

44. b1200405.png ; $X \subset L ^ { 0 } ( \mu )$ ; confidence 0.760

45. b13007044.png ; $a ^ { - 1 } b ^ { k } a$ ; confidence 0.760

46. a13031098.png ; $N E X P$ ; confidence 0.760

47. c1202106.png ; $( X , A _ { N } )$ ; confidence 0.760

48. c120210111.png ; $\theta _ { n } = \theta + h / \sqrt { n }$ ; confidence 0.760

49. l120170308.png ; $X \times I ^ { 2 }$ ; confidence 0.760

50. f040230178.png ; $f _ { 1 } , \dots , f _ { k }$ ; confidence 0.760

51. a130240517.png ; $V _ { j j ^ { \prime } } = Z _ { 3 j } ^ { \prime } Z _ { 3 j }$ ; confidence 0.760

52. s12035028.png ; $= \lambda \operatorname { lim } _ { N \rightarrow \infty } \sum _ { t = 1 } ^ { N } E \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ( \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ) ^ { T }$ ; confidence 0.760

53. r13016035.png ; $R = C ^ { \infty } ( \Omega ) \nmid I _ { S }$ ; confidence 0.760

54. m13023019.png ; $20$ ; confidence 0.760

55. c02211046.png ; $j , r = 1 , \dots , m$ ; confidence 0.759

56. r08232070.png ; $b \leq c \leq d , e$ ; confidence 0.759

57. a13008051.png ; $= \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }$ ; confidence 0.759

58. c11040014.png ; $C ( G )$ ; confidence 0.759

59. n067520244.png ; $d _ { i } \times d _ { j }$ ; confidence 0.759

60. f13019043.png ; $O ( N ^ { 2 d } )$ ; confidence 0.759

61. t120060106.png ; $\rho _ { \text { atom } } ^ { TF }$ ; confidence 0.759

62. c120180393.png ; $q _ { 1 } + \ldots + q _ { m }$ ; confidence 0.759

63. a12022010.png ; $X = c 0$ ; confidence 0.759

64. b13006017.png ; $\| A \| _ { 1 } = \operatorname { max } _ { i } \sum _ { j } | a _ { i j } |$ ; confidence 0.759

65. l13001080.png ; $C _ { 1 } N ^ { n + ( n - 1 ) / 2 } \leq \| S _ { H _ { N } } \| \leq C _ { 2 } N ^ { n + ( n - 1 ) / 2 }$ ; confidence 0.759

66. z13001033.png ; $Z ^ { - 1 } ( x ( z ) ) = x ( n )$ ; confidence 0.759

67. b12005014.png ; $f : U \rightarrow C$ ; confidence 0.759

68. b13026049.png ; $y \notin F ( \partial U )$ ; confidence 0.759

69. j13003031.png ; $\alpha \square \alpha ^ { * }$ ; confidence 0.759

70. c13025010.png ; $\beta ^ { T } = ( \beta _ { 1 } , \dots , \beta _ { p } )$ ; confidence 0.759

71. n067520355.png ; $( \exists g ) ( \forall \phi ) ( \exists f ) ( \forall x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.759

72. j120020176.png ; $H _ { 0 } ^ { 2 }$ ; confidence 0.759

73. b13002018.png ; $\| x \| ^ { 2 } \leq \| x ^ { 2 } + y ^ { 2 } \|$ ; confidence 0.759

74. c02327011.png ; $\overline { p } = p$ ; confidence 0.759

75. d12028052.png ; $D ; \subset C ^ { 1 }$ ; confidence 0.759

76. p12017070.png ; $\delta _ { A , B } ( X ) \in I$ ; confidence 0.758

77. b12043047.png ; $[ m ] _ { q } ! = [ m ] _ { q } [ m - 1 ] _ { q } \ldots [ 1 ] _ { q }$ ; confidence 0.758

78. d12029068.png ; $f ( q ) = O ( 1 / q ^ { 2 } )$ ; confidence 0.758

79. b12052038.png ; $B _ { + } = B _ { c } + \frac { ( y - B _ { c } s ) s ^ { T } } { s ^ { T } s }$ ; confidence 0.758

80. b120420128.png ; $SL _ { q } ( 2 )$ ; confidence 0.758

81. a13022050.png ; $S _ { C } ( D ) = k$ ; confidence 0.758

82. j12001053.png ; $F \in \operatorname { Aut } _ { R } R [ X ]$ ; confidence 0.758

83. c0232702.png ; $A \rightarrow \overline { A }$ ; confidence 0.758

84. q13005091.png ; $z _ { 2 } \neq z _ { 3 }$ ; confidence 0.758

85. y1200404.png ; $f _ { j } : \Omega \rightarrow R ^ { d }$ ; confidence 0.758

86. q12005081.png ; $\mu = \frac { y ^ { T } H y \cdot s ^ { T } B s } { ( s ^ { T } y ) ^ { 2 } }$ ; confidence 0.758

87. g13003041.png ; $I _ { 0 } = \{ ( u _ { j } ) _ { j \in N }$ ; confidence 0.758

88. t13005066.png ; $\operatorname { Ker } D _ { A } / \operatorname { Ran } D _ { A } = \operatorname { Ker } A \oplus ( X / \operatorname { Ran } A )$ ; confidence 0.758

89. e120230175.png ; $\sigma ^ { 2 k ^ { * } } [ E ( L ) ( Z ^ { 2 k } ) ] = \sigma ^ { k + 1 ^ { * } } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ]$ ; confidence 0.758

90. a13018024.png ; $L$ ; confidence 0.758

91. i130060186.png ; $S ( k ) = f ( - k ) / f ( k )$ ; confidence 0.758

92. a13012058.png ; $s > 2$ ; confidence 0.758

93. g12004098.png ; $x , \xi p _ { m } ( x , \xi )$ ; confidence 0.758

94. l05754062.png ; $C _ { + }$ ; confidence 0.758

95. g120040117.png ; $G ^ { S }$ ; confidence 0.758

96. f120110107.png ; $Q [ K ]$ ; confidence 0.758

97. f12004027.png ; $X \times W$ ; confidence 0.757

98. a01246092.png ; $f = ( f _ { 1 } , \dots , f _ { n } )$ ; confidence 0.757

99. i13002073.png ; $\varphi ( n ) = n - \frac { n } { p _ { 1 } } - \ldots - \frac { n } { p _ { k } } +$ ; confidence 0.757

100. c12021082.png ; $L$ ; confidence 0.757

101. a13029082.png ; $Q _ { id } = Q \times S ^ { 1 } \rightarrow \Sigma \times S ^ { 1 }$ ; confidence 0.757

102. b1300206.png ; $\operatorname { sp } ( J , x )$ ; confidence 0.757

103. n12012014.png ; $x \in \Sigma ^ { * }$ ; confidence 0.757

104. k1101403.png ; $L$ ; confidence 0.757

105. a130180122.png ; $R \subseteq \square ^ { n } U$ ; confidence 0.757

106. z13003066.png ; $\hat { f } ( - 2 \pi w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { 1 } e ^ { - 2 \pi i w t } ( Z f ) ( t , w ) d t$ ; confidence 0.757

107. d130080141.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) ) \oplus \operatorname { Im } ( I - F ^ { \prime } ( c ) ) = X$ ; confidence 0.757

108. f1302102.png ; $f \in L _ { C } ^ { 1 } ( G )$ ; confidence 0.757

109. h1201106.png ; $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$ ; confidence 0.757

110. b110220184.png ; $L ^ { * } ( h ^ { 2 } ( X ) , s ) _ { s = 1 }$ ; confidence 0.757

111. d12011018.png ; $\sum _ { j \in I } f ( x _ { i j } ) < \infty$ ; confidence 0.757

112. d03383074.png ; $S _ { \mu }$ ; confidence 0.757

113. b01533015.png ; $d < b$ ; confidence 0.757

114. g13002011.png ; $e ^ { z _ { 1 } + z _ { 2 } } = e ^ { z _ { 1 } } e ^ { z _ { 2 } }$ ; confidence 0.757

115. z13008032.png ; $k , l \in N _ { 0 }$ ; confidence 0.757

116. q12005059.png ; $H _ { k + 1 } = H _ { k } + \beta _ { k } u ^ { k } ( u ^ { k } ) ^ { T } + \gamma _ { k } v ^ { k } ( v ^ { k } ) ^ { T }$ ; confidence 0.757

117. s13065031.png ; $\operatorname { lim } _ { n \rightarrow \infty } \phi _ { n } ^ { * } ( z ) = D _ { \mu } ( z ) ^ { - 1 }$ ; confidence 0.757

118. a13006064.png ; $G _ { R }$ ; confidence 0.757

119. l1100107.png ; $- x$ ; confidence 0.756

120. p1301207.png ; $s ( D )$ ; confidence 0.756

121. s12035012.png ; $Z ^ { t - 1 } = \{ y ( t - 1 ) , u ( t - 1 ) , \dots , y ( 0 ) , u ( 0 ) \}$ ; confidence 0.756

122. z13011096.png ; $- \frac { 1 } { k + d n _ { k } } \cdot [ ( i + d ) \mu ( i , m ) - ( i + d + 1 ) \mu ( i + 1 , m ) ] = 0$ ; confidence 0.756

123. b12032086.png ; $k \operatorname { log } m \leq i \operatorname { log } n < ( k + 1 ) \operatorname { log } r$ ; confidence 0.756

124. p13010018.png ; $P ( K ) ^ { * }$ ; confidence 0.756

125. s086360140.png ; $k = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.756

126. s12024036.png ; $E \times ( )$ ; confidence 0.756

127. l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756

128. c12029052.png ; $G = \text { Coker } ( \partial )$ ; confidence 0.756

129. c13010018.png ; $A _ { i } \cap A _ { j } = \emptyset$ ; confidence 0.756

130. b13012074.png ; $t | \leq \pi$ ; confidence 0.756

131. d03006010.png ; $\frac { \partial ^ { 2 } u ( t , x ) } { \partial t ^ { 2 } } - a ^ { 2 } \frac { \partial ^ { 2 } u ( t , x ) } { \partial x ^ { 2 } } = f ( t , x )$ ; confidence 0.756

132. w12021073.png ; $( s _ { 1 } , \dots , s _ { k } , l _ { m } )$ ; confidence 0.756

133. t12020095.png ; $( n / ( 2 e ( m + n ) ) ) ^ { n }$ ; confidence 0.756

134. f13029038.png ; $T : L ^ { X } \rightarrow L$ ; confidence 0.756

135. i1200901.png ; $( M ^ { 2 n } , \omega )$ ; confidence 0.756

136. t12013012.png ; $( L _ { 1 } , L _ { 2 } ) = ( S _ { 1 } \Lambda S _ { 1 } ^ { - 1 } , S _ { 2 } \Lambda ^ { t } S _ { 2 } ^ { - 1 } )$ ; confidence 0.756

137. z13007013.png ; $u \in Z G$ ; confidence 0.756

138. c0220803.png ; $x _ { S }$ ; confidence 0.756

139. d13018023.png ; $J _ { E } \subset I _ { E }$ ; confidence 0.755

140. a12015046.png ; $( G ) X$ ; confidence 0.755

141. c130070170.png ; $C ( P )$ ; confidence 0.755

142. v130050104.png ; $( u , v ) \mapsto u _ { x } ( v )$ ; confidence 0.755

143. c12007093.png ; $F : C ^ { * } \otimes _ { k } C \rightarrow Ab$ ; confidence 0.755

144. d1301106.png ; $( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) + m _ { 0 } ^ { 2 } c ^ { 2 } =$ ; confidence 0.755

145. b12034074.png ; $\| f \| \leq 2 f ( z _ { 0 } )$ ; confidence 0.755

146. w12006085.png ; $T _ { A } \xi$ ; confidence 0.755

147. i130030166.png ; $\phi * ( \text { ind } ( D ) )$ ; confidence 0.755

148. o13003046.png ; $N ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$ ; confidence 0.755

149. m13013020.png ; $m _ { i j } = 0$ ; confidence 0.755

150. p12014039.png ; $E _ { r } = S \cup T$ ; confidence 0.755

151. i120050112.png ; $P _ { \theta } ( \| T _ { N } - \theta \| > \epsilon _ { N } )$ ; confidence 0.755

152. s13064058.png ; $k$ ; confidence 0.755

153. a130070129.png ; $n = 1.3 .5 . . ( 2 k - 1 )$ ; confidence 0.755

154. w13007037.png ; $| \gamma | = r + \sum _ { j = 1 } ^ { s } p _ { j }$ ; confidence 0.755

155. j13003055.png ; $\{ x y z \} = x \circ ( y ^ { * } \circ z ) + z \circ ( y ^ { * } \circ x ) - ( x \circ z ) \circ y ^ { * }$ ; confidence 0.755

156. d11008037.png ; $\delta ( w | v )$ ; confidence 0.755

157. d1300501.png ; $m > 4$ ; confidence 0.755

158. l12006055.png ; $= \int _ { 0 } ^ { \infty } | ( V \phi | \lambda ) | ^ { 2 } ( \frac { 1 } { \zeta - \lambda - i \epsilon } - \frac { 1 } { \zeta - \lambda + i \epsilon } ) d \lambda =$ ; confidence 0.755

159. b0167303.png ; $s = 1,2 , \dots$ ; confidence 0.755

160. f12024083.png ; $t + \theta < t$ ; confidence 0.755

161. l11002068.png ; $| x y | \preceq | x | | y | | x |$ ; confidence 0.754

162. c1202803.png ; $C _ { 2 } \rightarrow C _ { 1 } \rightarrow C _ { 0 }$ ; confidence 0.754

163. g0433208.png ; $u \in C _ { 0 } ^ { \infty } ( G )$ ; confidence 0.754

164. w12001039.png ; $W _ { \infty }$ ; confidence 0.754

165. c12017046.png ; $K \subset R$ ; confidence 0.754

166. t12007057.png ; $> - 1$ ; confidence 0.754

167. w13009052.png ; $\theta _ { N } ( f ) = \varphi$ ; confidence 0.754

168. a130180148.png ; $D$ ; confidence 0.754

169. d13008035.png ; $b \in \partial \Delta$ ; confidence 0.754

170. a130040615.png ; $h = \operatorname { mng } s _ { P } , \mathfrak { N }$ ; confidence 0.754

171. f04044029.png ; $a \leq 0$ ; confidence 0.754

172. b12010021.png ; $( [ L , A ] F ) _ { N } ( X ) =$ ; confidence 0.754

173. d13017021.png ; $\{ \varphi _ { i } \} _ { l = 1 } ^ { k - 1 }$ ; confidence 0.754

174. p13013029.png ; $SP ( n )$ ; confidence 0.754

175. c12031033.png ; $\| f \| ^ { 2 } = \sum _ { \alpha _ { l } \leq k } \| D ^ { \alpha } f \| ^ { 2 } L _ { 2 }$ ; confidence 0.754

176. a013010149.png ; $A _ { y }$ ; confidence 0.754

177. b12012014.png ; $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ ; confidence 0.754

178. c1202002.png ; $\xi = ker \alpha$ ; confidence 0.754

179. s13054097.png ; $\{ a , b \} _ { \infty }$ ; confidence 0.753

180. m13007025.png ; $E [ m , s ] A ( f ) \Omega \neq 0$ ; confidence 0.753

181. v13005048.png ; $Y ( v , x ) 1$ ; confidence 0.753

182. w13017017.png ; $K _ { j } \in R ^ { n \times n } , K _ { 0 } = l , \sum _ { j = 0 } ^ { \infty } \| K _ { j } \| ^ { 2 } < \infty$ ; confidence 0.753

183. e120190110.png ; $m \in S$ ; confidence 0.753

184. d120020161.png ; $X \neq 0$ ; confidence 0.753

185. s12023088.png ; $P ( | XX ^ { \prime } | \neq 0 ) = 1$ ; confidence 0.753

186. p12015036.png ; $n + 2$ ; confidence 0.753

187. j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753

188. l0596103.png ; $q = ( r _ { 1 } , \dots , r _ { N } )$ ; confidence 0.753

189. d1200206.png ; $( P D )$ ; confidence 0.753

190. a12026057.png ; $A ^ { N }$ ; confidence 0.753

191. e12006030.png ; $T _ { y } Y = V _ { y } Y + \Gamma ( y )$ ; confidence 0.753

192. t13008012.png ; $V _ { t } = \mu _ { x } + t d t S - P d t +$ ; confidence 0.753

193. a01149074.png ; $x ^ { \prime }$ ; confidence 0.753

194. f13002013.png ; $c ^ { \alpha } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { \alpha } ( x )$ ; confidence 0.753

195. d12026014.png ; $E f ( X _ { n } ) \rightarrow E f ( w ) , \quad n \rightarrow \infty$ ; confidence 0.753

196. g04339014.png ; $\delta f ( x _ { 0 } , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h , \quad f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y )$ ; confidence 0.752

197. t13014070.png ; $h _ { j } \in Gl ( v _ { j } , K )$ ; confidence 0.752

198. c02189013.png ; $r = 2$ ; confidence 0.752

199. y1200107.png ; $R _ { 13 } = ( 1 \otimes _ { k } \tau _ { V , V } ) ( R \otimes _ { k } 1 ) ( 1 \otimes _ { k } \tau _ { V , V } )$ ; confidence 0.752

200. p12015051.png ; $\Delta$ ; confidence 0.752

201. a12005058.png ; $u \in C ( [ 0 , T ] ; X ) \cap C ^ { 1 } ( ( 0 , T ] ; X )$ ; confidence 0.752

202. q1300306.png ; $\alpha | 0 \rangle + \beta | 1 \rangle$ ; confidence 0.752

203. m1300607.png ; $\alpha _ { 1 } \geq d ^ { m - 1 } ( d - 1 )$ ; confidence 0.752

204. q120070143.png ; $R : G _ { q } \rightarrow U _ { q } ( g )$ ; confidence 0.752

205. k13007042.png ; $L ^ { \infty }$ ; confidence 0.752

206. t130050153.png ; $( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( X / \operatorname { Ran } D _ { A } ^ { 1 } )$ ; confidence 0.752

207. m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752

208. b01731024.png ; $y ^ { \prime }$ ; confidence 0.752

209. i12006079.png ; $L _ { 1 } , \ldots , L _ { k }$ ; confidence 0.752

210. c130160165.png ; $( w \in S )$ ; confidence 0.752

211. s13036017.png ; $1$ ; confidence 0.752

212. a01105026.png ; $f : X \rightarrow S$ ; confidence 0.752

213. a0113707.png ; $f ( a )$ ; confidence 0.752

214. i120080123.png ; $T / T _ { c } \rightarrow 1$ ; confidence 0.752

215. i13006057.png ; $s _ { j } > 0$ ; confidence 0.751

216. g12005029.png ; $R < R _ { c }$ ; confidence 0.751

217. a130060102.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = \lambda$ ; confidence 0.751

218. c02245012.png ; $\xi _ { 1 }$ ; confidence 0.751

219. c120180328.png ; $\tau _ { 3 } : \otimes ^ { 3 } E \rightarrow \otimes ^ { 3 } E$ ; confidence 0.751

220. a010210120.png ; $1$ ; confidence 0.751

221. z13011028.png ; $\Delta G _ { n } ( x ) \equiv \mu _ { n } ( x ) = \sum 1 _ { \{ f _ { i n } = x \} }$ ; confidence 0.751

222. a1302006.png ; $( x , y , z ) \rightarrow \{ x y z \}$ ; confidence 0.751

223. c13016074.png ; $S = \Sigma ^ { * } - S$ ; confidence 0.751

224. s13050034.png ; $X = \{ \pi ( 1 ) , \ldots , \pi ( | X | ) \}$ ; confidence 0.751

225. e120260100.png ; $P ( \theta , \mu _ { p _ { j } } )$ ; confidence 0.751

226. d12014023.png ; $D _ { N } ( x , 1 ) = u ^ { n } + u ^ { - n } = e ^ { i n \alpha } + e ^ { - i n \alpha } =$ ; confidence 0.751

227. a130240101.png ; $x$ ; confidence 0.751

228. h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$ ; confidence 0.751

229. s13002038.png ; $l ( u ) = \operatorname { sup } \{ t \geq 0 : g + ( u ) \text { is defined } \}$ ; confidence 0.751

230. p130100153.png ; $z \in T$ ; confidence 0.751

231. h13006012.png ; $T _ { n } f ( z ) = \sum _ { m = 0 } ^ { \infty } \gamma _ { n } ( m ) q ^ { m } ( z )$ ; confidence 0.751

232. i13007045.png ; $A ( \alpha ^ { \prime } , \alpha 0 , k )$ ; confidence 0.751

233. o13006028.png ; $\sigma _ { 1 } = \frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) | _ { E } , \sigma _ { 2 } = \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) | _ { E } , \gamma = \frac { 1 } { i } ( A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * } ) | _ { E } , \tilde { \gamma } = \frac { 1 } { i } ( A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 } ) | _ { E }$ ; confidence 0.751

234. l12004073.png ; $f _ { i + 1 / 2 } = f ( u _ { i + 1 / 2 } ^ { n + 1 / 2 } )$ ; confidence 0.751

235. f12010096.png ; $SL ( 2 , O _ { K } )$ ; confidence 0.751

236. a13002017.png ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751

237. w120090298.png ; $b ^ { + }$ ; confidence 0.751

238. h13006019.png ; $T _ { n } ( L ) = \sum L ^ { \prime }$ ; confidence 0.751

239. k12010021.png ; $( t _ { 1 } , \dots , t _ { m } )$ ; confidence 0.751

240. f13024020.png ; $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$ ; confidence 0.751

241. d12026020.png ; $P \{ X _ { n } \in G \} \rightarrow P \{ w \in G \}$ ; confidence 0.751

242. e120010110.png ; $( f _ { i } : X \rightarrow G A _ { i } ) _ { I }$ ; confidence 0.751

243. t13013047.png ; $( T , . ) : T \rightarrow Y$ ; confidence 0.751

244. h12005037.png ; $+ \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y$ ; confidence 0.750

245. b120150138.png ; $k j \in N \cup \{ 0 \}$ ; confidence 0.750

246. b12005010.png ; $P ( z ) = A ( z , \dots , z )$ ; confidence 0.750

247. a12022021.png ; $T$ ; confidence 0.750

248. i13006013.png ; $f ( k ) = | f ( k ) | e ^ { - i \delta ( k ) }$ ; confidence 0.750

249. b12014032.png ; $\omega ( \beta ) \nmid \sigma ^ { \prime } ( \beta )$ ; confidence 0.750

250. f04098026.png ; $M ^ { 4 }$ ; confidence 0.750

251. b12023031.png ; $\Sigma V$ ; confidence 0.750

252. q1300409.png ; $G$ ; confidence 0.750

253. s12024040.png ; $H _ { x } ^ { S }$ ; confidence 0.750

254. a130240235.png ; $SS _ { e } = \sum _ { i = r + 1 } ^ { n } z _ { i } ^ { 2 }$ ; confidence 0.750

255. w13004027.png ; $g = - \frac { \omega _ { 1 } + i \omega _ { 2 } } { \omega _ { 3 } } = \frac { \omega _ { 3 } } { \omega _ { 1 } - i \omega _ { 2 } } , \eta = g ^ { - 1 } \omega _ { 3 }$ ; confidence 0.750

256. t12005095.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( V , W )$ ; confidence 0.750

257. m120120104.png ; $R C \subseteq R N \subseteq Q _ { s } ( R )$ ; confidence 0.750

258. m12003089.png ; $\vec { x }$ ; confidence 0.749

259. s13048058.png ; $M = G / G 0$ ; confidence 0.749

260. e12009023.png ; $F _ { \nu } ^ { \mu \nu } = S ^ { \mu }$ ; confidence 0.749

261. a12023047.png ; $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$ ; confidence 0.749

262. a130040127.png ; $\psi$ ; confidence 0.749

263. i13005076.png ; $r + ( k ) = O ( 1 / k )$ ; confidence 0.749

264. t12020085.png ; $\theta \approx 0,2784$ ; confidence 0.749

265. a12006027.png ; $A u = \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u$ ; confidence 0.749

266. i13003072.png ; $T _ { vert } ^ { * } Y : = T ^ { * } Y / \pi ^ { * } ( T ^ { * } B )$ ; confidence 0.749

267. n067520492.png ; $\Lambda ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.749

268. a12027059.png ; $( N / K )$ ; confidence 0.749

269. t12005026.png ; $x \in \Sigma ^ { i , j } ( f )$ ; confidence 0.749

270. e12014038.png ; $v _ { i } \in V$ ; confidence 0.749

271. j12002099.png ; $Y _ { t } = B _ { \operatorname { min } } ( t , 1 )$ ; confidence 0.749

272. k12004023.png ; $K _ { 1 } \# - K _ { 2 }$ ; confidence 0.749

273. f120150201.png ; $\{ x _ { n } \} \subset D ( A )$ ; confidence 0.748

274. i13006012.png ; $f ( 0 , k ) : = f ( k )$ ; confidence 0.748

275. n1300306.png ; $v _ { x x } = \lambda v$ ; confidence 0.748

276. b110420103.png ; $\alpha ( x , \xi )$ ; confidence 0.748

277. a13006069.png ; $G _ { 1 }$ ; confidence 0.748

278. m130180173.png ; $( M \backslash a , M , M / a )$ ; confidence 0.748

279. e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748

280. a12007046.png ; $u ^ { \prime } \in C ^ { \alpha } ( [ 0 , T ] ; X ) \cap B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.748

281. j13003030.png ; $[ \alpha \square b ^ { * } , x \square y ^ { * } ] = \{ a b x \} \square y ^ { * } - x \square \{ y a b \}$ ; confidence 0.748

282. k12013026.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$ ; confidence 0.748

283. b13016057.png ; $f | _ { K } \in A | _ { K }$ ; confidence 0.748

284. p1201707.png ; $\delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$ ; confidence 0.748

285. a11050055.png ; $\alpha \in K$ ; confidence 0.748

286. a01233028.png ; $1 > 0$ ; confidence 0.748

287. b12052085.png ; $= - \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.747

288. d0304107.png ; $a \geq 0$ ; confidence 0.747

289. t13005050.png ; $\sigma _ { T } ( A , X ) = \{ \lambda \in C ^ { n } : K ( A - \lambda , X )$ ; confidence 0.747

290. c0235705.png ; $M \subset X$ ; confidence 0.747

291. b01556042.png ; $D ^ { * }$ ; confidence 0.747

292. n067520242.png ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.747

293. d03033015.png ; $\gamma \rightarrow \int _ { \gamma } \omega$ ; confidence 0.747

294. b015350295.png ; $i _ { \infty }$ ; confidence 0.747

295. a120260127.png ; $A \{ X _ { 1 } , \dots , X _ { s _ { i } } \}$ ; confidence 0.747

296. k05584061.png ; $\| G | ^ { 1 / 2 } x \|$ ; confidence 0.747

297. m13018020.png ; $g ( x ) = \sum _ { y : y \geq x } f ( y ) \Leftrightarrow f ( x ) = \sum _ { y : y \geq x } \mu ( x , y ) g ( y )$ ; confidence 0.747

298. m12016054.png ; $k ( \Phi ) = n _ { 1 }$ ; confidence 0.747

299. b130300100.png ; $\psi _ { i - 1 } ( A _ { i } ^ { x } )$ ; confidence 0.747

300. s1200406.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { l } )$ ; confidence 0.747

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/43. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/43&oldid=44453