Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/28"
(AUTOMATIC EDIT of page 28 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 28 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200303.png ; $| d \varphi$ ; confidence 0.948 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004031.png ; $\sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi }$ ; confidence 0.948 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012063.png ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004027.png ; $- 2 * \partial _ { \zeta } N ( \zeta , z )$ ; confidence 0.948 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012049.png ; $d = 2$ ; confidence 0.948 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007023.png ; $x ^ { - 1 } H x \subseteq G$ ; confidence 0.948 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005019.png ; $p _ { 1 } p _ { 2 } p _ { 3 }$ ; confidence 0.948 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300604.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005069.png ; $q ( x ) \in L _ { 1,1 } ( R )$ ; confidence 0.947 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a1302706.png ; $\{ X _ { n } \} \subset X$ ; confidence 0.947 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060135.png ; $| i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x )$ ; confidence 0.947 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024029.png ; $g = 0$ ; confidence 0.947 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650269.png ; $M \times M$ ; confidence 0.947 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012056.png ; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002077.png ; $X = M ^ { 1 } - \operatorname { lim } _ { N \rightarrow \infty } \sum _ { n = - N } ^ { n = N } c _ { n } A ^ { n }$ ; confidence 0.947 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190161.png ; $[ x , y ] \backslash \{ x , y \}$ ; confidence 0.947 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500081.png ; $I ( \xi , \xi ^ { \prime } )$ ; confidence 0.947 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/r/r130/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004062.png ; $\Delta ^ { 2 } u _ { 1 } = \Lambda _ { 1 } u _ { 1 } \text { in } \Omega$ ; confidence 0.947 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011016.png ; $K ^ { \perp }$ ; confidence 0.947 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002042.png ; $P , Q \in A [ X ]$ ; confidence 0.947 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007014.png ; $s \in ( 1 / 2 ) Z$ ; confidence 0.947 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008070.png ; $q _ { 1 } ( x ) = q _ { 2 } ( x )$ ; confidence 0.947 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a0120907.png ; $\alpha \neq 0$ ; confidence 0.947 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002069.png ; $\| \phi - f \| _ { L } \infty = \| H _ { \phi } \|$ ; confidence 0.947 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051093.png ; $( n - 1 , \{ s _ { k } \} , \{ y _ { k } \} , H _ { 0 } ^ { - 1 } , d )$ ; confidence 0.947 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011020.png ; $( J ^ { t } a ) ( x , \xi ) =$ ; confidence 0.947 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022074.png ; $G ( u ) = \int a ( \xi ) H ( M ( u , \xi ) , \xi ) d \xi$ ; confidence 0.947 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201102.png ; $T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \}$ ; confidence 0.947 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201403.png ; $\omega ( z )$ ; confidence 0.947 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201102.png ; $y _ { i } = x _ { i } + \epsilon _ { i }$ ; confidence 0.947 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006056.png ; $W ^ { k } E _ { \Phi } ( R ^ { n } )$ ; confidence 0.947 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016120/b01612010.png ; $x y$ ; confidence 0.947 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006068.png ; $V ^ { H } V = I$ ; confidence 0.947 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026097.png ; $V ^ { G }$ ; confidence 0.947 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049039.png ; $\{ A _ { j } \}$ ; confidence 0.947 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106807.png ; $p \leq q$ ; confidence 0.947 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120177.png ; $O _ { K _ { S } } [ \sigma ]$ ; confidence 0.947 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430112.png ; $\beta \gamma = \gamma \beta + ( 1 - q ^ { - 2 } ) \alpha ( \delta - \alpha ) , \delta \beta = \beta \delta + ( 1 - q ^ { - 2 } ) \alpha \beta$ ; confidence 0.947 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052075.png ; $u _ { n } = \frac { y _ { n } } { \| s _ { n } \| _ { 2 } } \text { and } v _ { n } = \frac { s _ { n } } { \| s _ { n } \| _ { 2 } }$ ; confidence 0.947 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070103.png ; $\leq - \operatorname { log } ( \operatorname { max } \{ \operatorname { dist } ( z , \partial \Omega ) , \operatorname { dist } ( w , \partial \Omega ) \} )$ ; confidence 0.947 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080109.png ; $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$ ; confidence 0.947 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022034.png ; $Q ( f ) = \psi ( \rho _ { f } , T _ { f } ) ( M _ { f } - f )$ ; confidence 0.947 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080199.png ; $\frac { d f } { d t _ { s } } = \kappa \partial _ { s } f + \{ H _ { s } , f \}$ ; confidence 0.947 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027064.png ; $b ( . )$ ; confidence 0.947 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001057.png ; $\chi _ { \lambda ^ { \prime } } \preceq \chi _ { \lambda }$ ; confidence 0.947 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007022.png ; $b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 }$ ; confidence 0.947 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030029.png ; $( H , H )$ ; confidence 0.946 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001045.png ; $K _ { i } = \operatorname { lim } _ { z \rightarrow z _ { i } } [ ( z - z _ { i } ) \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.946 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032025.png ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180117.png ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005033.png ; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021068.png ; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090344.png ; $\beta \in \Sigma$ ; confidence 0.946 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017044.png ; $f ( d ) = \sum w _ { i } d _ { i }$ ; confidence 0.946 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009021.png ; $g _ { \mu \nu } = \left( \begin{array} { c c c c } { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \end{array} \right)$ ; confidence 0.946 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002018.png ; $L ( \pi - x ) = \pi \operatorname { ln } 2 - L ( x )$ ; confidence 0.946 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305106.png ; $S \subset Z ^ { 0 }$ ; confidence 0.946 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l1200406.png ; $x \in [ 0 , L ]$ ; confidence 0.946 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290156.png ; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003085.png ; $H _ { \vec { \theta } }$ ; confidence 0.946 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002014.png ; $E \subset S$ ; confidence 0.946 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/w/w120/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110264.png ; $g _ { 1 } \leq \ldots \leq g _ { k }$ ; confidence 0.946 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302508.png ; $p _ { k } ( x ) \in C [ a , b ]$ ; confidence 0.946 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101803.png ; $\rho ( u )$ ; confidence 0.946 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014020.png ; $R ^ { 3 }$ ; confidence 0.946 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png ; $C ( S )$ ; confidence 0.946 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240218.png ; $z = \Gamma y$ ; confidence 0.946 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810196.png ; $D ^ { \alpha } f$ ; confidence 0.946 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070230.png ; $T _ { 2 } \in \Re ( C _ { 2 } )$ ; confidence 0.946 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028051.png ; $\pi ( X * )$ ; confidence 0.946 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005020.png ; $= \frac { \Gamma ( \alpha + \beta ) } { \Gamma ( \alpha ) \Gamma ( \beta ) } \int _ { 0 } ^ { 1 } \tau ( x + ( y - x ) t ) t ^ { \beta - 1 } ( 1 - t ) ^ { \alpha - 1 } d t +$ ; confidence 0.946 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025024.png ; $i = 1,2$ ; confidence 0.946 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230141.png ; $\Delta = \pi ^ { k ^ { * } } ( \Delta )$ ; confidence 0.946 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584079.png ; $[ f , g ] = \int _ { - \infty } ^ { - \infty } f g d \sigma$ ; confidence 0.946 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160158.png ; $NP = SO ( \exists )$ ; confidence 0.946 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/w/w130/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w1301304.png ; $H = ( \kappa _ { 1 } + \kappa _ { 2 } ) / 2$ ; confidence 0.946 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003011.png ; $\mu ( E ) | < \varepsilon$ ; confidence 0.946 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583034.png ; $u \in H ^ { \infty }$ ; confidence 0.946 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067098.png ; $GL ^ { 2 } ( n ) \rightarrow GL ^ { 1 } ( n )$ ; confidence 0.946 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230137.png ; $f ( C )$ ; confidence 0.946 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/z/z130/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013027.png ; $H ( r , 0 ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , 0 )$ ; confidence 0.946 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018092.png ; $( X , R )$ ; confidence 0.946 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029081.png ; $Y _ { id } = \Sigma \times S ^ { 1 }$ ; confidence 0.946 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017012.png ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063670/m06367019.png ; $K = 1$ ; confidence 0.946 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301707.png ; $d _ { 1 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r + \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.946 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006096.png ; $Z ^ { 7 / 3 }$ ; confidence 0.946 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070107.png ; $\Delta g = g \otimes g$ ; confidence 0.946 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640011.png ; $p ^ { k }$ ; confidence 0.945 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680253.png ; $R = Z$ ; confidence 0.945 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025080.png ; $( x , \varepsilon ) \in R ^ { n } \times ( 0 , \infty )$ ; confidence 0.945 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015030.png ; $= ( 4 q ^ { 2 t } \frac { q ^ { 2 t } - 1 } { q ^ { 2 } - 1 } , q ^ { 2 t - 1 } [ \frac { 2 ( q ^ { 2 t } - 1 ) } { q + 1 } + 1 ] , q ^ { 2 t - 1 } ( q - 1 ) \frac { q ^ { 2 t - 1 } + 1 } { q + 1 } , q ^ { 4 t - 2 } )$ ; confidence 0.945 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043025.png ; $S : B \rightarrow B$ ; confidence 0.945 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028038.png ; $\overline { f } ( [ g ] ) : X \rightarrow P$ ; confidence 0.945 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021046.png ; $V ( a , p )$ ; confidence 0.945 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203406.png ; $SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.945 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005024.png ; $\varphi ( u ) = u ^ { p }$ ; confidence 0.945 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485060.png ; $a + b$ ; confidence 0.945 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021088.png ; $a ^ { 2 } 0 \neq 0$ ; confidence 0.945 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006025.png ; $m ( \Xi ) = 1$ ; confidence 0.945 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019079.png ; $\beta > 9 / 56 = 0.1607$ ; confidence 0.945 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290124.png ; $i \neq 1 , \operatorname { dim } A$ ; confidence 0.945 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157039.png ; $L _ { 2 } ( G )$ ; confidence 0.945 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003057.png ; $s _ { i } + j - 1$ ; confidence 0.945 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240417.png ; $( n - r ) ^ { - 1 } M _ { E }$ ; confidence 0.945 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003041.png ; $\Psi \circ f = F _ { K } \circ \Phi$ ; confidence 0.945 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240213.png ; $7$ ; confidence 0.945 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300112.png ; $F _ { m }$ ; confidence 0.945 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012057.png ; $F ^ { 4 } \in N P$ ; confidence 0.945 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008093.png ; $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.945 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001050.png ; $K _ { i } = \frac { 1 } { ( r - 1 ) ! } \operatorname { lim } _ { z \rightarrow z _ { i } } \frac { d ^ { n } } { d z ^ { - 1 } } [ ( z - z _ { i } ) ^ { r } \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.945 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c1301102.png ; $f : H \rightarrow R \cup \{ \infty \}$ ; confidence 0.945 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007092.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042230/f04223042.png ; $1$ ; confidence 0.945 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230180.png ; $\sigma ^ { 2 k ^ { * } } E ( L ) = 0$ ; confidence 0.945 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024025.png ; $f ( r ) ( x _ { 0 } ) = f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.945 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200502.png ; $| S ( z ) | \leq 1$ ; confidence 0.945 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201507.png ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300207.png ; $M ( r _ { 1 } , r _ { 2 } ) > ( \frac { \pi } { 4 } ) ^ { 2 r _ { 2 } } ( \frac { n ^ { n } } { n ! } ) ^ { 2 }$ ; confidence 0.945 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004041.png ; $H \in X$ ; confidence 0.945 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007081.png ; $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.945 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013037.png ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006051.png ; $[ q ]$ ; confidence 0.945 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006058.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033030.png ; $A _ { d R } ( X )$ ; confidence 0.945 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372092.png ; $U ( a , R )$ ; confidence 0.945 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007033.png ; $L ( s , \chi - 3 )$ ; confidence 0.945 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002058.png ; $X _ { n } = 1 / n ( X _ { 1 } + \ldots + X _ { n } )$ ; confidence 0.945 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050151.png ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024035.png ; $F / Q$ ; confidence 0.945 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007026.png ; $k \rightarrow \infty$ ; confidence 0.945 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026018.png ; $f \in \Gamma ( L ^ { 2 } ( R ) )$ ; confidence 0.944 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001057.png ; $p ^ { m } - 1$ ; confidence 0.944 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017028.png ; $d = n - m > 0$ ; confidence 0.944 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008088.png ; $M _ { \varphi }$ ; confidence 0.944 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034049.png ; $( \varphi _ { n } ) _ { n = 0 } ^ { \infty }$ ; confidence 0.944 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007045.png ; $d < n$ ; confidence 0.944 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031039.png ; $\rho ( X _ { 1 } )$ ; confidence 0.944 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007012.png ; $d ^ { n } : C ^ { n } ( C , M ) \rightarrow C ^ { n + 1 } ( C , M )$ ; confidence 0.944 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007061.png ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } -$ ; confidence 0.944 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m12024011.png ; $d \Omega = \varphi \psi _ { x } d x + \psi \varphi y d y$ ; confidence 0.944 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070120.png ; $\{ a , b , c , d \}$ ; confidence 0.944 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520207.png ; $\epsilon _ { 1 } = \ldots \epsilon _ { p } = 1$ ; confidence 0.944 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j1300403.png ; $P _ { L } ( \square )$ ; confidence 0.944 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620195.png ; $[ - g , g ]$ ; confidence 0.944 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301403.png ; $\hat { f } ( \alpha , p ) : = R f$ ; confidence 0.944 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002073.png ; $R ^ { k }$ ; confidence 0.944 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566013.png ; $X$ ; confidence 0.944 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695036.png ; $q - 1$ ; confidence 0.944 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960308.png ; $y = - x + ( x ^ { 3 } / 3 ) + ( \dot { x } / \mu )$ ; confidence 0.944 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/b/b130/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007085.png ; $BS ( 1 , n )$ ; confidence 0.944 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301308.png ; $y = r \operatorname { sin } \theta \operatorname { sin } \phi$ ; confidence 0.944 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520139.png ; $e _ { j } ^ { n _ { i j } } \in E _ { A , K [ \lambda ] }$ ; confidence 0.944 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096050.png ; $G ( K )$ ; confidence 0.944 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/b/b130/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007082.png ; $BS ( 1 , m )$ ; confidence 0.944 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015031.png ; $\alpha \nmid \beta$ ; confidence 0.944 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020018.png ; $K ( a , b )$ ; confidence 0.944 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005033.png ; $A _ { b } ( B _ { E } ) \equiv$ ; confidence 0.944 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c02325041.png ; $k = n + 1$ ; confidence 0.944 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070150.png ; $= \int \int _ { T } d m ( t ) d m ( s ) F ( t ) \overline { G ( s ) } ( h ( s , x ) , h ( t , x ) ) _ { H } =$ ; confidence 0.944 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032037.png ; $x , y \in E$ ; confidence 0.944 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c1300108.png ; $N _ { V }$ ; confidence 0.944 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300905.png ; $a \in R ^ { n } \backslash \{ 0 \}$ ; confidence 0.944 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005039.png ; $F _ { q } [ T ]$ ; confidence 0.943 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160129.png ; $W E$ ; confidence 0.943 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007073.png ; $( f ( x ) , K ( x , y ) ) = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) ) =$ ; confidence 0.943 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011041.png ; $L =$ ; confidence 0.943 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080122.png ; $B _ { 2 } ( G )$ ; confidence 0.943 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620142.png ; $\theta ( . , \lambda )$ ; confidence 0.943 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012021.png ; $u , v \in A$ ; confidence 0.943 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006035.png ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200907.png ; $G / C _ { G } ( \langle x \rangle ^ { G } )$ ; confidence 0.943 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018064.png ; $H ( A ^ { c } )$ ; confidence 0.943 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027033.png ; $E _ { m } + 1$ ; confidence 0.943 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022077.png ; $a ( \xi ) = \xi$ ; confidence 0.943 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/c/c130/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070245.png ; $2 g - 2 = \nu _ { i } ( 2 g _ { i } - 2 ) + \mathfrak { D } _ { i }$ ; confidence 0.943 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691021.png ; $0 < a < 1$ ; confidence 0.943 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029027.png ; $x ^ { \pm } \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.943 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040153.png ; $L ^ { m } + Q$ ; confidence 0.943 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/c/c130/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010035.png ; $( f _ { 1 } ( x ) - f _ { 1 } ( y ) ) \cdot ( f _ { 2 } ( x ) - f _ { 2 } ( y ) ) \geq 0$ ; confidence 0.943 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210108.png ; $+ z ^ { \lambda } \sum _ { j = 1 } ^ { \infty } z ^ { j } [ c _ { j } ( \lambda ) \pi ( \lambda + j ) + \sum _ { k = 0 } ^ { j - 1 } c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) ]$ ; confidence 0.943 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025018.png ; $\omega = \pi / 6$ ; confidence 0.943 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008097.png ; $T _ { p q }$ ; confidence 0.943 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010023.png ; $- F _ { n + 1 } ( X , q _ { i } + \sigma \eta , p _ { n + 1 } ) )$ ; confidence 0.943 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/c/c130/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005045.png ; $( G )$ ; confidence 0.943 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202908.png ; $\mu ( \square ^ { g } m ) = g \mu ( m ) g ^ { - 1 } , \square ^ { \mu ( m ) } m ^ { \prime } = m m ^ { \prime } m ^ { - 1 }$ ; confidence 0.943 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014024.png ; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } ( \frac { x } { 2 } )$ ; confidence 0.943 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019021.png ; $X = R ^ { 2 }$ ; confidence 0.943 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008098.png ; $N _ { f } = 0$ ; confidence 0.943 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010058.png ; $J = 60 G _ { 4 } ^ { 3 } / \Delta$ ; confidence 0.943 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007079.png ; $m | \neq | n$ ; confidence 0.943 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012038.png ; $K >$ ; confidence 0.943 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012022.png ; $h ( G )$ ; confidence 0.943 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200139.png ; $i \neq - j$ ; confidence 0.943 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013059.png ; $L ^ { + } = D ^ { + } - A ^ { \prime }$ ; confidence 0.943 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201307.png ; $P ( x )$ ; confidence 0.943 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012540/a0125405.png ; $S \subset G$ ; confidence 0.943 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053021.png ; $( T f _ { n } ) _ { n = 1 } ^ { \infty } \subset M$ ; confidence 0.943 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050137.png ; $0 \in \sigma _ { T } ( A , H )$ ; confidence 0.943 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008067.png ; $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$ ; confidence 0.943 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200108.png ; $1 \cup \{ \infty \}$ ; confidence 0.942 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500030.png ; $\{ C _ { i } \}$ ; confidence 0.942 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001010.png ; $X ^ { ( r ) }$ ; confidence 0.942 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302906.png ; $\otimes : L \times L \rightarrow L$ ; confidence 0.942 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690066.png ; $A = x _ { i \in I } A$ ; confidence 0.942 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520486.png ; $\Phi ^ { ( j ) } = O ( | Z | )$ ; confidence 0.942 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037026.png ; $\hat { \theta }$ ; confidence 0.942 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073040/p07304033.png ; $X$ ; confidence 0.942 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007061.png ; $BS ( 1,2 )$ ; confidence 0.942 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/e/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e1200606.png ; $T _ { y } Y$ ; confidence 0.942 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240228.png ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006097.png ; $F : M f \rightarrow M f$ ; confidence 0.942 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397072.png ; $V \times V$ ; confidence 0.942 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003049.png ; $GF _ { 4 }$ ; confidence 0.942 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010054.png ; $\alpha : y \rightarrow x$ ; confidence 0.942 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020920/c02092025.png ; $B ( x )$ ; confidence 0.942 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010072.png ; $\partial \phi$ ; confidence 0.942 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950122.png ; $( a , b )$ ; confidence 0.942 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045079.png ; $= 6 \int _ { 0 } ^ { 1 } C _ { X , Y } ( u , u ) d u - 2$ ; confidence 0.942 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028095.png ; $C ( K )$ ; confidence 0.942 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022032.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005010.png ; $g a = b$ ; confidence 0.942 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011024.png ; $A v = \lambda M v$ ; confidence 0.942 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066061.png ; $| y ^ { \prime } - y | \leq | x - y | / 2$ ; confidence 0.942 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007058.png ; $g \mapsto a _ { n } ( g )$ ; confidence 0.942 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180312.png ; $\nabla g = 0 \in \otimes ^ { 3 } E$ ; confidence 0.942 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003064.png ; $M ( E ) = L ( E ) ^ { * }$ ; confidence 0.942 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201103.png ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013019.png ; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012096.png ; $\mu ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } y _ { i } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } }$ ; confidence 0.942 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037078.png ; $L \in N P$ ; confidence 0.942 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040266.png ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040242.png ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010141.png ; $M _ { 0 } \times S ^ { 1 } \approx M _ { 1 } \times S ^ { 1 }$ ; confidence 0.942 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l057540111.png ; $\beta ( t )$ ; confidence 0.942 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042080.png ; $\Psi ^ { - 1 }$ ; confidence 0.942 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019022.png ; $( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y$ ; confidence 0.942 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301307.png ; $x = r \operatorname { sin } \theta \operatorname { cos } \phi$ ; confidence 0.941 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260248.png ; $z \dot { b } = x \dot { b }$ ; confidence 0.941 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040052.png ; $X _ { G } E G \rightarrow B G$ ; confidence 0.941 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003018.png ; $\Gamma \backslash X$ ; confidence 0.941 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067070.png ; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in GL ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }$ ; confidence 0.941 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051071.png ; $G = ( V , E )$ ; confidence 0.941 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203401.png ; $\sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k }$ ; confidence 0.941 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210139.png ; $\{ \alpha _ { n } \} \subseteq \{ n \}$ ; confidence 0.941 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005076.png ; $\frac { I - \Theta _ { \Delta } ( z ) \Theta _ { \Delta } ( w ) ^ { * } } { 1 - z \overline { w } } = G ( I - z T ) ^ { - 1 } ( I - \overline { w } T ^ { * } ) ^ { - 1 } G ^ { * }$ ; confidence 0.941 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b120320102.png ; $F ( t , 1 - t ) = \| t x + ( 1 - t ) y \| \leq 1$ ; confidence 0.941 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105038.png ; $P \subset [ a , b ]$ ; confidence 0.941 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021082.png ; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } ] =$ ; confidence 0.941 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007064.png ; $L ^ { 2 } ( R ^ { 2 n } )$ ; confidence 0.941 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170229.png ; $x _ { i } = x _ { j } x _ { k } x _ { j } ^ { - 1 }$ ; confidence 0.941 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037040.png ; $L _ { \Omega } ( f )$ ; confidence 0.941 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120128.png ; $C = Z ( Q )$ ; confidence 0.941 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007099.png ; $n ^ { 10 }$ ; confidence 0.941 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695087.png ; $R ( G )$ ; confidence 0.941 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202007.png ; $S ^ { k } \times D ^ { m - k }$ ; confidence 0.941 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040163.png ; $P ( t , x ; D _ { t } , D _ { x } ) u =$ ; confidence 0.941 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012020.png ; $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.941 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004023.png ; $J ^ { k } F$ ; confidence 0.941 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040107.png ; $L = L _ { 1 } = D _ { x _ { 1 } }$ ; confidence 0.941 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064410/m06441016.png ; $\Gamma _ { 0 } ( N )$ ; confidence 0.941 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005040.png ; $v \mapsto Y ( v , x )$ ; confidence 0.941 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/h/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200507.png ; $u _ { \Phi }$ ; confidence 0.941 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023057.png ; $f _ { t , s } ( x ) = \operatorname { sup } _ { z \in H } \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| z - y \| ^ { 2 } - \frac { 1 } { 2 s } \| x - z \| ^ { 2 } )$ ; confidence 0.941 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001032.png ; $O ( 1 )$ ; confidence 0.941 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566046.png ; $p < q$ ; confidence 0.941 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003069.png ; $\vec { x }$ ; confidence 0.941 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005022.png ; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007082.png ; $H ( x )$ ; confidence 0.941 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200138.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019076.png ; $\zeta ( \frac { 1 } { 2 } + i t ) \ll t ^ { \beta }$ ; confidence 0.941 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070124.png ; $a d - q ^ { - 1 } b c$ ; confidence 0.941 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010022.png ; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004090.png ; $f ^ { * }$ ; confidence 0.941 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240546.png ; $7$ ; confidence 0.941 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007074.png ; $K _ { 2 } > 0$ ; confidence 0.941 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013054.png ; $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ ; confidence 0.941 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/i/i130/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005054.png ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : \forall k > 0,1 \leq j \leq J \}$ ; confidence 0.940 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007092.png ; $| x | > R$ ; confidence 0.940 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018014.png ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024046.png ; $t - h ( t ) + \infty$ ; confidence 0.940 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319031.png ; $\Lambda _ { 1 }$ ; confidence 0.940 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002031.png ; $| \hat { f } ( y ) | \leq B e ^ { - \pi b y ^ { 2 } }$ ; confidence 0.940 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110104.png ; $v ( x , t )$ ; confidence 0.940 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840125.png ; $L \cap L ^ { \perp } = \{ 0 \}$ ; confidence 0.940 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014042.png ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940 |
Revision as of 00:10, 13 February 2020
List
1. ; $| d \varphi$ ; confidence 0.948
2. ; $\sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi }$ ; confidence 0.948
3. ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948
4. ; $- 2 * \partial _ { \zeta } N ( \zeta , z )$ ; confidence 0.948
5. ; $d = 2$ ; confidence 0.948
6. ; $x ^ { - 1 } H x \subseteq G$ ; confidence 0.948
7. ; $p _ { 1 } p _ { 2 } p _ { 3 }$ ; confidence 0.948
8. ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948
9. ; $q ( x ) \in L _ { 1,1 } ( R )$ ; confidence 0.947
10. ; $\{ X _ { n } \} \subset X$ ; confidence 0.947
11. ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
12. ; $| i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x )$ ; confidence 0.947
13. ; $g = 0$ ; confidence 0.947
14. ; $M \times M$ ; confidence 0.947
15. ; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947
16. ; $X = M ^ { 1 } - \operatorname { lim } _ { N \rightarrow \infty } \sum _ { n = - N } ^ { n = N } c _ { n } A ^ { n }$ ; confidence 0.947
17. ; $[ x , y ] \backslash \{ x , y \}$ ; confidence 0.947
18. ; $I ( \xi , \xi ^ { \prime } )$ ; confidence 0.947
19. ; $\Delta ^ { 2 } u _ { 1 } = \Lambda _ { 1 } u _ { 1 } \text { in } \Omega$ ; confidence 0.947
20. ; $K ^ { \perp }$ ; confidence 0.947
21. ; $P , Q \in A [ X ]$ ; confidence 0.947
22. ; $s \in ( 1 / 2 ) Z$ ; confidence 0.947
23. ; $q _ { 1 } ( x ) = q _ { 2 } ( x )$ ; confidence 0.947
24. ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
25. ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
26. ; $\alpha \neq 0$ ; confidence 0.947
27. ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
28. ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
29. ; $\| \phi - f \| _ { L } \infty = \| H _ { \phi } \|$ ; confidence 0.947
30. ; $( n - 1 , \{ s _ { k } \} , \{ y _ { k } \} , H _ { 0 } ^ { - 1 } , d )$ ; confidence 0.947
31. ; $( J ^ { t } a ) ( x , \xi ) =$ ; confidence 0.947
32. ; $G ( u ) = \int a ( \xi ) H ( M ( u , \xi ) , \xi ) d \xi$ ; confidence 0.947
33. ; $T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \}$ ; confidence 0.947
34. ; $\omega ( z )$ ; confidence 0.947
35. ; $y _ { i } = x _ { i } + \epsilon _ { i }$ ; confidence 0.947
36. ; $W ^ { k } E _ { \Phi } ( R ^ { n } )$ ; confidence 0.947
37. ; $x y$ ; confidence 0.947
38. ; $V ^ { H } V = I$ ; confidence 0.947
39. ; $V ^ { G }$ ; confidence 0.947
40. ; $\{ A _ { j } \}$ ; confidence 0.947
41. ; $p \leq q$ ; confidence 0.947
42. ; $O _ { K _ { S } } [ \sigma ]$ ; confidence 0.947
43. ; $\beta \gamma = \gamma \beta + ( 1 - q ^ { - 2 } ) \alpha ( \delta - \alpha ) , \delta \beta = \beta \delta + ( 1 - q ^ { - 2 } ) \alpha \beta$ ; confidence 0.947
44. ; $u _ { n } = \frac { y _ { n } } { \| s _ { n } \| _ { 2 } } \text { and } v _ { n } = \frac { s _ { n } } { \| s _ { n } \| _ { 2 } }$ ; confidence 0.947
45. ; $\leq - \operatorname { log } ( \operatorname { max } \{ \operatorname { dist } ( z , \partial \Omega ) , \operatorname { dist } ( w , \partial \Omega ) \} )$ ; confidence 0.947
46. ; $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$ ; confidence 0.947
47. ; $Q ( f ) = \psi ( \rho _ { f } , T _ { f } ) ( M _ { f } - f )$ ; confidence 0.947
48. ; $\frac { d f } { d t _ { s } } = \kappa \partial _ { s } f + \{ H _ { s } , f \}$ ; confidence 0.947
49. ; $b ( . )$ ; confidence 0.947
50. ; $\chi _ { \lambda ^ { \prime } } \preceq \chi _ { \lambda }$ ; confidence 0.947
51. ; $b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 }$ ; confidence 0.947
52. ; $( H , H )$ ; confidence 0.946
53. ; $K _ { i } = \operatorname { lim } _ { z \rightarrow z _ { i } } [ ( z - z _ { i } ) \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.946
54. ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946
55. ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946
56. ; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946
57. ; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946
58. ; $\beta \in \Sigma$ ; confidence 0.946
59. ; $f ( d ) = \sum w _ { i } d _ { i }$ ; confidence 0.946
60. ; $g _ { \mu \nu } = \left( \begin{array} { c c c c } { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \end{array} \right)$ ; confidence 0.946
61. ; $L ( \pi - x ) = \pi \operatorname { ln } 2 - L ( x )$ ; confidence 0.946
62. ; $S \subset Z ^ { 0 }$ ; confidence 0.946
63. ; $x \in [ 0 , L ]$ ; confidence 0.946
64. ; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946
65. ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946
66. ; $H _ { \vec { \theta } }$ ; confidence 0.946
67. ; $E \subset S$ ; confidence 0.946
68. ; $g _ { 1 } \leq \ldots \leq g _ { k }$ ; confidence 0.946
69. ; $p _ { k } ( x ) \in C [ a , b ]$ ; confidence 0.946
70. ; $\rho ( u )$ ; confidence 0.946
71. ; $R ^ { 3 }$ ; confidence 0.946
72. ; $C ( S )$ ; confidence 0.946
73. ; $z = \Gamma y$ ; confidence 0.946
74. ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
75. ; $D ^ { \alpha } f$ ; confidence 0.946
76. ; $T _ { 2 } \in \Re ( C _ { 2 } )$ ; confidence 0.946
77. ; $\pi ( X * )$ ; confidence 0.946
78. ; $= \frac { \Gamma ( \alpha + \beta ) } { \Gamma ( \alpha ) \Gamma ( \beta ) } \int _ { 0 } ^ { 1 } \tau ( x + ( y - x ) t ) t ^ { \beta - 1 } ( 1 - t ) ^ { \alpha - 1 } d t +$ ; confidence 0.946
79. ; $i = 1,2$ ; confidence 0.946
80. ; $\Delta = \pi ^ { k ^ { * } } ( \Delta )$ ; confidence 0.946
81. ; $[ f , g ] = \int _ { - \infty } ^ { - \infty } f g d \sigma$ ; confidence 0.946
82. ; $NP = SO ( \exists )$ ; confidence 0.946
83. ; $H = ( \kappa _ { 1 } + \kappa _ { 2 } ) / 2$ ; confidence 0.946
84. ; $\mu ( E ) | < \varepsilon$ ; confidence 0.946
85. ; $u \in H ^ { \infty }$ ; confidence 0.946
86. ; $GL ^ { 2 } ( n ) \rightarrow GL ^ { 1 } ( n )$ ; confidence 0.946
87. ; $f ( C )$ ; confidence 0.946
88. ; $H ( r , 0 ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , 0 )$ ; confidence 0.946
89. ; $( X , R )$ ; confidence 0.946
90. ; $Y _ { id } = \Sigma \times S ^ { 1 }$ ; confidence 0.946
91. ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946
92. ; $K = 1$ ; confidence 0.946
93. ; $d _ { 1 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r + \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.946
94. ; $Z ^ { 7 / 3 }$ ; confidence 0.946
95. ; $\Delta g = g \otimes g$ ; confidence 0.946
96. ; $p ^ { k }$ ; confidence 0.945
97. ; $R = Z$ ; confidence 0.945
98. ; $( x , \varepsilon ) \in R ^ { n } \times ( 0 , \infty )$ ; confidence 0.945
99. ; $= ( 4 q ^ { 2 t } \frac { q ^ { 2 t } - 1 } { q ^ { 2 } - 1 } , q ^ { 2 t - 1 } [ \frac { 2 ( q ^ { 2 t } - 1 ) } { q + 1 } + 1 ] , q ^ { 2 t - 1 } ( q - 1 ) \frac { q ^ { 2 t - 1 } + 1 } { q + 1 } , q ^ { 4 t - 2 } )$ ; confidence 0.945
100. ; $S : B \rightarrow B$ ; confidence 0.945
101. ; $\overline { f } ( [ g ] ) : X \rightarrow P$ ; confidence 0.945
102. ; $V ( a , p )$ ; confidence 0.945
103. ; $SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.945
104. ; $\varphi ( u ) = u ^ { p }$ ; confidence 0.945
105. ; $a + b$ ; confidence 0.945
106. ; $a ^ { 2 } 0 \neq 0$ ; confidence 0.945
107. ; $m ( \Xi ) = 1$ ; confidence 0.945
108. ; $\beta > 9 / 56 = 0.1607$ ; confidence 0.945
109. ; $i \neq 1 , \operatorname { dim } A$ ; confidence 0.945
110. ; $L _ { 2 } ( G )$ ; confidence 0.945
111. ; $s _ { i } + j - 1$ ; confidence 0.945
112. ; $( n - r ) ^ { - 1 } M _ { E }$ ; confidence 0.945
113. ; $\Psi \circ f = F _ { K } \circ \Phi$ ; confidence 0.945
114. ; $7$ ; confidence 0.945
115. ; $F _ { m }$ ; confidence 0.945
116. ; $F ^ { 4 } \in N P$ ; confidence 0.945
117. ; $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.945
118. ; $K _ { i } = \frac { 1 } { ( r - 1 ) ! } \operatorname { lim } _ { z \rightarrow z _ { i } } \frac { d ^ { n } } { d z ^ { - 1 } } [ ( z - z _ { i } ) ^ { r } \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.945
119. ; $f : H \rightarrow R \cup \{ \infty \}$ ; confidence 0.945
120. ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945
121. ; $1$ ; confidence 0.945
122. ; $\sigma ^ { 2 k ^ { * } } E ( L ) = 0$ ; confidence 0.945
123. ; $f ( r ) ( x _ { 0 } ) = f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.945
124. ; $| S ( z ) | \leq 1$ ; confidence 0.945
125. ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945
126. ; $M ( r _ { 1 } , r _ { 2 } ) > ( \frac { \pi } { 4 } ) ^ { 2 r _ { 2 } } ( \frac { n ^ { n } } { n ! } ) ^ { 2 }$ ; confidence 0.945
127. ; $H \in X$ ; confidence 0.945
128. ; $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.945
129. ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945
130. ; $[ q ]$ ; confidence 0.945
131. ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945
132. ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945
133. ; $A _ { d R } ( X )$ ; confidence 0.945
134. ; $U ( a , R )$ ; confidence 0.945
135. ; $L ( s , \chi - 3 )$ ; confidence 0.945
136. ; $X _ { n } = 1 / n ( X _ { 1 } + \ldots + X _ { n } )$ ; confidence 0.945
137. ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945
138. ; $F / Q$ ; confidence 0.945
139. ; $k \rightarrow \infty$ ; confidence 0.945
140. ; $f \in \Gamma ( L ^ { 2 } ( R ) )$ ; confidence 0.944
141. ; $p ^ { m } - 1$ ; confidence 0.944
142. ; $d = n - m > 0$ ; confidence 0.944
143. ; $M _ { \varphi }$ ; confidence 0.944
144. ; $( \varphi _ { n } ) _ { n = 0 } ^ { \infty }$ ; confidence 0.944
145. ; $d < n$ ; confidence 0.944
146. ; $\rho ( X _ { 1 } )$ ; confidence 0.944
147. ; $d ^ { n } : C ^ { n } ( C , M ) \rightarrow C ^ { n + 1 } ( C , M )$ ; confidence 0.944
148. ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } -$ ; confidence 0.944
149. ; $d \Omega = \varphi \psi _ { x } d x + \psi \varphi y d y$ ; confidence 0.944
150. ; $\{ a , b , c , d \}$ ; confidence 0.944
151. ; $\epsilon _ { 1 } = \ldots \epsilon _ { p } = 1$ ; confidence 0.944
152. ; $P _ { L } ( \square )$ ; confidence 0.944
153. ; $[ - g , g ]$ ; confidence 0.944
154. ; $\hat { f } ( \alpha , p ) : = R f$ ; confidence 0.944
155. ; $R ^ { k }$ ; confidence 0.944
156. ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944
157. ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944
158. ; $X$ ; confidence 0.944
159. ; $q - 1$ ; confidence 0.944
160. ; $y = - x + ( x ^ { 3 } / 3 ) + ( \dot { x } / \mu )$ ; confidence 0.944
161. ; $BS ( 1 , n )$ ; confidence 0.944
162. ; $y = r \operatorname { sin } \theta \operatorname { sin } \phi$ ; confidence 0.944
163. ; $e _ { j } ^ { n _ { i j } } \in E _ { A , K [ \lambda ] }$ ; confidence 0.944
164. ; $G ( K )$ ; confidence 0.944
165. ; $BS ( 1 , m )$ ; confidence 0.944
166. ; $\alpha \nmid \beta$ ; confidence 0.944
167. ; $K ( a , b )$ ; confidence 0.944
168. ; $A _ { b } ( B _ { E } ) \equiv$ ; confidence 0.944
169. ; $k = n + 1$ ; confidence 0.944
170. ; $= \int \int _ { T } d m ( t ) d m ( s ) F ( t ) \overline { G ( s ) } ( h ( s , x ) , h ( t , x ) ) _ { H } =$ ; confidence 0.944
171. ; $x , y \in E$ ; confidence 0.944
172. ; $N _ { V }$ ; confidence 0.944
173. ; $a \in R ^ { n } \backslash \{ 0 \}$ ; confidence 0.944
174. ; $F _ { q } [ T ]$ ; confidence 0.943
175. ; $W E$ ; confidence 0.943
176. ; $( f ( x ) , K ( x , y ) ) = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) ) =$ ; confidence 0.943
177. ; $L =$ ; confidence 0.943
178. ; $B _ { 2 } ( G )$ ; confidence 0.943
179. ; $\theta ( . , \lambda )$ ; confidence 0.943
180. ; $u , v \in A$ ; confidence 0.943
181. ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943
182. ; $G / C _ { G } ( \langle x \rangle ^ { G } )$ ; confidence 0.943
183. ; $H ( A ^ { c } )$ ; confidence 0.943
184. ; $E _ { m } + 1$ ; confidence 0.943
185. ; $a ( \xi ) = \xi$ ; confidence 0.943
186. ; $2 g - 2 = \nu _ { i } ( 2 g _ { i } - 2 ) + \mathfrak { D } _ { i }$ ; confidence 0.943
187. ; $0 < a < 1$ ; confidence 0.943
188. ; $x ^ { \pm } \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.943
189. ; $L ^ { m } + Q$ ; confidence 0.943
190. ; $( f _ { 1 } ( x ) - f _ { 1 } ( y ) ) \cdot ( f _ { 2 } ( x ) - f _ { 2 } ( y ) ) \geq 0$ ; confidence 0.943
191. ; $+ z ^ { \lambda } \sum _ { j = 1 } ^ { \infty } z ^ { j } [ c _ { j } ( \lambda ) \pi ( \lambda + j ) + \sum _ { k = 0 } ^ { j - 1 } c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) ]$ ; confidence 0.943
192. ; $\omega = \pi / 6$ ; confidence 0.943
193. ; $T _ { p q }$ ; confidence 0.943
194. ; $- F _ { n + 1 } ( X , q _ { i } + \sigma \eta , p _ { n + 1 } ) )$ ; confidence 0.943
195. ; $( G )$ ; confidence 0.943
196. ; $\mu ( \square ^ { g } m ) = g \mu ( m ) g ^ { - 1 } , \square ^ { \mu ( m ) } m ^ { \prime } = m m ^ { \prime } m ^ { - 1 }$ ; confidence 0.943
197. ; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } ( \frac { x } { 2 } )$ ; confidence 0.943
198. ; $X = R ^ { 2 }$ ; confidence 0.943
199. ; $N _ { f } = 0$ ; confidence 0.943
200. ; $J = 60 G _ { 4 } ^ { 3 } / \Delta$ ; confidence 0.943
201. ; $m | \neq | n$ ; confidence 0.943
202. ; $K >$ ; confidence 0.943
203. ; $h ( G )$ ; confidence 0.943
204. ; $i \neq - j$ ; confidence 0.943
205. ; $L ^ { + } = D ^ { + } - A ^ { \prime }$ ; confidence 0.943
206. ; $P ( x )$ ; confidence 0.943
207. ; $S \subset G$ ; confidence 0.943
208. ; $( T f _ { n } ) _ { n = 1 } ^ { \infty } \subset M$ ; confidence 0.943
209. ; $0 \in \sigma _ { T } ( A , H )$ ; confidence 0.943
210. ; $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$ ; confidence 0.943
211. ; $1 \cup \{ \infty \}$ ; confidence 0.942
212. ; $\{ C _ { i } \}$ ; confidence 0.942
213. ; $X ^ { ( r ) }$ ; confidence 0.942
214. ; $\otimes : L \times L \rightarrow L$ ; confidence 0.942
215. ; $A = x _ { i \in I } A$ ; confidence 0.942
216. ; $\Phi ^ { ( j ) } = O ( | Z | )$ ; confidence 0.942
217. ; $\hat { \theta }$ ; confidence 0.942
218. ; $X$ ; confidence 0.942
219. ; $BS ( 1,2 )$ ; confidence 0.942
220. ; $T _ { y } Y$ ; confidence 0.942
221. ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942
222. ; $F : M f \rightarrow M f$ ; confidence 0.942
223. ; $V \times V$ ; confidence 0.942
224. ; $GF _ { 4 }$ ; confidence 0.942
225. ; $\alpha : y \rightarrow x$ ; confidence 0.942
226. ; $B ( x )$ ; confidence 0.942
227. ; $\partial \phi$ ; confidence 0.942
228. ; $( a , b )$ ; confidence 0.942
229. ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942
230. ; $= 6 \int _ { 0 } ^ { 1 } C _ { X , Y } ( u , u ) d u - 2$ ; confidence 0.942
231. ; $s ^ { 2 }$ ; confidence 0.942
232. ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
233. ; $C ( K )$ ; confidence 0.942
234. ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942
235. ; $g a = b$ ; confidence 0.942
236. ; $A v = \lambda M v$ ; confidence 0.942
237. ; $| y ^ { \prime } - y | \leq | x - y | / 2$ ; confidence 0.942
238. ; $g \mapsto a _ { n } ( g )$ ; confidence 0.942
239. ; $\nabla g = 0 \in \otimes ^ { 3 } E$ ; confidence 0.942
240. ; $M ( E ) = L ( E ) ^ { * }$ ; confidence 0.942
241. ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942
242. ; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942
243. ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942
244. ; $\mu ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } y _ { i } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } }$ ; confidence 0.942
245. ; $L \in N P$ ; confidence 0.942
246. ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942
247. ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942
248. ; $M _ { 0 } \times S ^ { 1 } \approx M _ { 1 } \times S ^ { 1 }$ ; confidence 0.942
249. ; $\beta ( t )$ ; confidence 0.942
250. ; $\Psi ^ { - 1 }$ ; confidence 0.942
251. ; $( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y$ ; confidence 0.942
252. ; $x = r \operatorname { sin } \theta \operatorname { cos } \phi$ ; confidence 0.941
253. ; $z \dot { b } = x \dot { b }$ ; confidence 0.941
254. ; $X _ { G } E G \rightarrow B G$ ; confidence 0.941
255. ; $\Gamma \backslash X$ ; confidence 0.941
256. ; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in GL ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }$ ; confidence 0.941
257. ; $G = ( V , E )$ ; confidence 0.941
258. ; $\sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k }$ ; confidence 0.941
259. ; $\{ \alpha _ { n } \} \subseteq \{ n \}$ ; confidence 0.941
260. ; $\frac { I - \Theta _ { \Delta } ( z ) \Theta _ { \Delta } ( w ) ^ { * } } { 1 - z \overline { w } } = G ( I - z T ) ^ { - 1 } ( I - \overline { w } T ^ { * } ) ^ { - 1 } G ^ { * }$ ; confidence 0.941
261. ; $F ( t , 1 - t ) = \| t x + ( 1 - t ) y \| \leq 1$ ; confidence 0.941
262. ; $P \subset [ a , b ]$ ; confidence 0.941
263. ; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } ] =$ ; confidence 0.941
264. ; $L ^ { 2 } ( R ^ { 2 n } )$ ; confidence 0.941
265. ; $x _ { i } = x _ { j } x _ { k } x _ { j } ^ { - 1 }$ ; confidence 0.941
266. ; $L _ { \Omega } ( f )$ ; confidence 0.941
267. ; $C = Z ( Q )$ ; confidence 0.941
268. ; $n ^ { 10 }$ ; confidence 0.941
269. ; $R ( G )$ ; confidence 0.941
270. ; $S ^ { k } \times D ^ { m - k }$ ; confidence 0.941
271. ; $P ( t , x ; D _ { t } , D _ { x } ) u =$ ; confidence 0.941
272. ; $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.941
273. ; $J ^ { k } F$ ; confidence 0.941
274. ; $L = L _ { 1 } = D _ { x _ { 1 } }$ ; confidence 0.941
275. ; $\Gamma _ { 0 } ( N )$ ; confidence 0.941
276. ; $v \mapsto Y ( v , x )$ ; confidence 0.941
277. ; $u _ { \Phi }$ ; confidence 0.941
278. ; $f _ { t , s } ( x ) = \operatorname { sup } _ { z \in H } \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| z - y \| ^ { 2 } - \frac { 1 } { 2 s } \| x - z \| ^ { 2 } )$ ; confidence 0.941
279. ; $O ( 1 )$ ; confidence 0.941
280. ; $p < q$ ; confidence 0.941
281. ; $\vec { x }$ ; confidence 0.941
282. ; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941
283. ; $H ( x )$ ; confidence 0.941
284. ; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941
285. ; $\zeta ( \frac { 1 } { 2 } + i t ) \ll t ^ { \beta }$ ; confidence 0.941
286. ; $a d - q ^ { - 1 } b c$ ; confidence 0.941
287. ; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941
288. ; $f ^ { * }$ ; confidence 0.941
289. ; $7$ ; confidence 0.941
290. ; $K _ { 2 } > 0$ ; confidence 0.941
291. ; $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ ; confidence 0.941
292. ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : \forall k > 0,1 \leq j \leq J \}$ ; confidence 0.940
293. ; $| x | > R$ ; confidence 0.940
294. ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940
295. ; $t - h ( t ) + \infty$ ; confidence 0.940
296. ; $\Lambda _ { 1 }$ ; confidence 0.940
297. ; $| \hat { f } ( y ) | \leq B e ^ { - \pi b y ^ { 2 } }$ ; confidence 0.940
298. ; $v ( x , t )$ ; confidence 0.940
299. ; $L \cap L ^ { \perp } = \{ 0 \}$ ; confidence 0.940
300. ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940
Maximilian Janisch/latexlist/latex/NoNroff/28. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/28&oldid=44438