Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/23"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 23 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 23 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011026.png ; $\sigma ( \Gamma ) \subseteq B ( 0 , r )$ ; confidence 0.991
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002050.png ; $u \neq 0$ ; confidence 0.974
  
2. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011017.png ; $\sigma ( z ) = e ^ { i \theta } z + \alpha$ ; confidence 0.620
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019045.png ; $\varphi ( t , x ) = e ^ { t A } x$ ; confidence 0.974
  
3. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011027.png ; $\int _ { \sigma ( \Gamma ) } f ( z ) d z = 0$ ; confidence 0.887
+
3. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034068.png ; $S ^ { 1 } = R / Z$ ; confidence 0.974
  
4. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301309.png ; $r = ( r _ { 1 } , \dots , r _ { N } ) \in R ^ { x }$ ; confidence 0.093
+
4. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007013.png ; $X = t ^ { 2 }$ ; confidence 0.974
  
5. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004027.png ; $- 2 * \partial _ { \zeta } N ( \zeta , z )$ ; confidence 0.948
+
5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070143.png ; $H ^ { 0 }$ ; confidence 0.974
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005034.png ; $f ( x , k ) = b ( k ) g ( x , k ) + a ( k ) g ( x , - k )$ ; confidence 0.878
+
6. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003044.png ; $j \geq j 0 \}$ ; confidence 0.974
  
7. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006024.png ; $l : = - \frac { d ^ { 2 } } { d x ^ { 2 } } + q ( x )$ ; confidence 0.972
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095068.png ; $x ^ { i } = x ^ { i } ( t )$ ; confidence 0.974
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060101.png ; $k \in R , \varphi _ { \pm } ( \infty ) = 1$ ; confidence 0.969
+
8. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300905.png ; $( N + 1 )$ ; confidence 0.974
  
9. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080100.png ; $S + 1 \rightarrow \langle m \rangle$ ; confidence 0.127
+
9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012034.png ; $\Phi = \overline { \phi } d \overline { \phi }$ ; confidence 0.974
  
10. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053030/i0530307.png ; $d X _ { t } = a ( t ) d t + \sigma ( t ) d W _ { t }$ ; confidence 0.687
+
10. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220161.png ; $\operatorname { det } ( r _ { D } )$ ; confidence 0.974
  
11. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090126.png ; $\lambda _ { p } ( K / k ) = \lambda ( X )$ ; confidence 0.997
+
11. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430142.png ; $E _ { 8 } ^ { ( 1 ) }$ ; confidence 0.974
  
12. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004029.png ; $P _ { 3 } = 2 v ^ { 2 } - v ^ { 4 } + v ^ { 2 } z ^ { 2 }$ ; confidence 0.866
+
12. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015019.png ; $\chi _ { K }$ ; confidence 0.974
  
13. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040141.png ; $( v , z ) = ( \pm e ^ { \pm \pi i / 3 } , \pm i )$ ; confidence 0.994
+
13. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001043.png ; $V _ { i } = F _ { i } / \Gamma _ { i }$ ; confidence 0.974
  
14. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005073.png ; $O _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) )$ ; confidence 0.315
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025023.png ; $D _ { i } \in D$ ; confidence 0.974
  
15. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002081.png ; $- P [ ( X - \hat { X } ) ( Y - \hat { Y } ) < 0 ] =$ ; confidence 0.134
+
15. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200107.png ; $( G _ { b } ^ { \alpha } f ) ( \omega ) = \int _ { - \infty } ^ { \infty } [ e ^ { - i \omega t } f ( t ) ] g _ { \alpha } ( t - b ) d t$ ; confidence 0.974
  
16. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008031.png ; $\lambda : R ^ { n } \rightarrow R ^ { q }$ ; confidence 0.577
+
16. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500062.png ; $B ( x _ { i } , \epsilon ) \subset C$ ; confidence 0.974
  
17. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840180.png ; $E _ { \lambda } ^ { \prime } \neq \{ 0 \}$ ; confidence 0.606
+
17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003054.png ; $( Z h ) ( t , w ) = \int _ { 0 } ^ { 1 } ( Z R ) ( t - s , w ) ( Z f ) ( s , w ) d s$ ; confidence 0.974
  
18. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006052.png ; $\Delta ( F ) | \geq \partial _ { k } ( m )$ ; confidence 0.805
+
18. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015075.png ; $u \in G ^ { \infty } ( \Omega )$ ; confidence 0.974
  
19. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020129.png ; $M ^ { \perp \perp \perp } = M ^ { \perp }$ ; confidence 0.972
+
19. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023067.png ; $E ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.974
  
20. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020144.png ; $( x \wedge y ^ { - 1 } x ^ { - 1 } y ) \vee e = e$ ; confidence 0.990
+
20. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046940/h04694056.png ; $A / I$ ; confidence 0.974
  
21. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003031.png ; $\mu _ { i } \leq \mu \in ca ( \Omega , F )$ ; confidence 0.609
+
21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005025.png ; $X ^ { p } - X - a$ ; confidence 0.974
  
22. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700060.png ; $\lambda x _ { 1 } \ldots x _ { n } \cdot M$ ; confidence 0.455
+
22. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017039.png ; $H ( k ) \equiv ( \beta _ { i + j } ) _ { 0 \leq i , j \leq k }$ ; confidence 0.974
  
23. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l1200303.png ; $\operatorname { Map } ( X , Y ) = [ X , Y ]$ ; confidence 0.988
+
23. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688030.png ; $s > 2$ ; confidence 0.974
  
24. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003037.png ; $c ( H ^ { * } Y , H ^ { * } X \otimes H ^ { * } Z )$ ; confidence 0.474
+
24. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006063.png ; $( P ) \leq k$ ; confidence 0.974
  
25. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004081.png ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187
+
25. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v0969109.png ; $\operatorname { lim } _ { T \rightarrow \infty } \frac { 1 } { T } \int _ { 0 } ^ { T } U _ { t } h d t = \hbar$ ; confidence 0.974
  
26. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300108.png ; $k = ( k _ { 1 } , \dots , k _ { N } ) \in Z ^ { x }$ ; confidence 0.172
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016090.png ; $USDF = \alpha + \beta$ ; confidence 0.974
  
27. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300107.png ; $x = ( x _ { 1 } , \dots , x _ { N } ) \in T ^ { x }$ ; confidence 0.203
+
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202006.png ; $M _ { 2 } ( k ) = \operatorname { max } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.974
  
28. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l13004021.png ; $[ D + x , E + y ] : = [ D , E ] + D y - E x + L ( x , y )$ ; confidence 0.967
+
28. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001057.png ; $F : C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.974
  
29. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010055.png ; $L _ { \gamma , 1 } ^ { 1 } = L _ { \gamma , 1 }$ ; confidence 0.917
+
29. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001046.png ; $F ^ { * } = F ^ { - 1 }$ ; confidence 0.974
  
30. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100136.png ; $\| \rho \| _ { L } \propto ( R ) \leq L / m$ ; confidence 0.687
+
30. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007024.png ; $M f = \operatorname { det } ( \frac { \partial ^ { 2 } f } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.974
  
31. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010043.png ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201
+
31. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l1200306.png ; $H ^ { * } ( X , F _ { p } ) = R ^ { * }$ ; confidence 0.974
  
32. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300509.png ; $( \alpha _ { k } ) _ { k } = 0 , \ldots , N - 1$ ; confidence 0.202
+
32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033026.png ; $( 4 u ^ { 2 } , 2 u ^ { 2 } - u , u ^ { 2 } - u )$ ; confidence 0.974
  
33. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006024.png ; $r \equiv 1 ( \operatorname { mod } 2 )$ ; confidence 0.778
+
33. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006058.png ; $J ^ { 1 } \Gamma : J ^ { 1 } Y \rightarrow J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.974
  
34. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006029.png ; $P _ { k } = ( u _ { t } + 1 , \dots , u _ { t } + k )$ ; confidence 0.159
+
34. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009071.png ; $H _ { K }$ ; confidence 0.973
  
35. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003055.png ; $\frac { s ^ { \prime } } { s } = e ^ { - x / k }$ ; confidence 0.972
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203206.png ; $x , y , u , v \in L ^ { P } ( \mu )$ ; confidence 0.973
  
36. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202005.png ; $A _ { 1 } , \dots , A _ { m } \subset S ^ { n }$ ; confidence 0.244
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003026.png ; $( a b ) ^ { - 1 } > 1$ ; confidence 0.973
  
37. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003043.png ; $\Psi ( x , \theta ) = \psi ( x - \theta )$ ; confidence 0.997
+
37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110125.png ; $R ^ { 2 n } \times R ^ { 2 n }$ ; confidence 0.973
  
38. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003059.png ; $\Psi ( x , \sigma ) = \chi ( x / \sigma )$ ; confidence 0.998
+
38. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005041.png ; $\theta \in \Theta _ { 1 } \subset \Theta - \Theta _ { 0 }$ ; confidence 0.973
  
39. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200706.png ; $M ( P ) = \operatorname { exp } ( m ( P ) )$ ; confidence 0.999
+
39. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002061.png ; $x ^ { + } = x \vee e$ ; confidence 0.973
  
40. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009018.png ; $\int _ { R ^ { 3 } } | \psi ( t , x ) | ^ { 2 } d x$ ; confidence 0.933
+
40. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003096.png ; $D _ { + } + D _ { + } ^ { * }$ ; confidence 0.973
  
41. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110125.png ; $v _ { i } \phi _ { , i } = ( v . \nabla ) \phi$ ; confidence 0.508
+
41. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001075.png ; $\dot { y } ( t ) = F ( y ( t ) )$ ; confidence 0.973
  
42. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015041.png ; $f _ { X , Y } ( X , Y ) = f _ { X } ( X ) f _ { Y } ( Y )$ ; confidence 0.995
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310123.png ; $T ^ { \prime } \leq o ( T )$ ; confidence 0.973
  
43. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140144.png ; $z = ( z _ { 1 } , \dots , z _ { x } ) \in C ^ { x }$ ; confidence 0.463
+
43. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080126.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) }$ ; confidence 0.973
  
44. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019018.png ; $f , g \in L _ { p } ( R _ { + } ; x ^ { \nu p - 1 } )$ ; confidence 0.428
+
44. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520254.png ; $d j = 0$ ; confidence 0.973
  
45. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377021.png ; $a _ { i } \in [ a _ { i } ^ { - } , a _ { i } ^ { + } ]$ ; confidence 0.980
+
45. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022054.png ; $Z ( g h ; z )$ ; confidence 0.973
  
46. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m1202105.png ; $A + B : = \{ \alpha + b : a \in A , b \in B \}$ ; confidence 0.604
+
46. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002027.png ; $F _ { 2 } + \ldots + F _ { 2 k } = F _ { 2 k + 1 } - 1$ ; confidence 0.973
  
47. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019047.png ; $M _ { n } = \operatorname { det } M _ { n }$ ; confidence 0.496
+
47. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338501.png ; $x ^ { j }$ ; confidence 0.973
  
48. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019026.png ; $\langle f , g \rangle = L ( f ( x ) g ( x ) )$ ; confidence 0.774
+
48. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020113.png ; $( x _ { 0 } , y _ { 0 } ) \in \Gamma ( F )$ ; confidence 0.973
  
49. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230127.png ; $\phi : X ^ { \prime } \rightarrow Y$ ; confidence 0.951
+
49. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450242.png ; $U _ { y }$ ; confidence 0.973
  
50. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025060.png ; $\int \rho _ { \varepsilon } ( x ) d x = 1$ ; confidence 0.895
+
50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007033.png ; $b = 1$ ; confidence 0.973
  
51. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180103.png ; $\mu ( U , V ) = ( - 1 ) ^ { d } q ^ { d ( d - 1 ) / 2 }$ ; confidence 0.516
+
51. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702060.png ; $H ^ { i } ( X , F ) = H ^ { i } ( X , F )$ ; confidence 0.973
  
52. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002058.png ; $X _ { n } = 1 / n ( X _ { 1 } + \ldots + X _ { n } )$ ; confidence 0.945
+
52. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008034.png ; $X \mapsto X ^ { \prime }$ ; confidence 0.973
  
53. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005018.png ; $r \leq \frac { s ^ { 2 } \mu - 1 } { \mu - 1 }$ ; confidence 0.995
+
53. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004037.png ; $=$ ; confidence 0.973
  
54. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120070/n12007023.png ; $A _ { j n _ { k } } \subset B , \quad k \in N$ ; confidence 0.506
+
54. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008030.png ; $n = [ L : K ]$ ; confidence 0.973
  
55. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630122.png ; $H _ { p } ^ { r - 1 / p } ( \partial \Omega )$ ; confidence 0.886
+
55. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008018.png ; $r ^ { 2 } = z z$ ; confidence 0.973
  
56. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663086.png ; $E _ { v _ { 1 } , \ldots , v _ { n } } ( f ) _ { p }$ ; confidence 0.537
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002034.png ; $R = P / Q$ ; confidence 0.973
  
57. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520331.png ; $\{ f _ { j _ { 1 } } , \dots , f _ { j _ { m } } \}$ ; confidence 0.515
+
57. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008014.png ; $S _ { i } = 1$ ; confidence 0.973
  
58. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520301.png ; $K = \sum \oplus K _ { \rho _ { \alpha } }$ ; confidence 0.988
+
58. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015046.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.973
  
59. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520330.png ; $\{ f _ { i _ { 1 } } , \dots , f _ { i _ { n } } \}$ ; confidence 0.624
+
59. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003010.png ; $L _ { 2 } ( \mu )$ ; confidence 0.973
  
60. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o1200103.png ; $\operatorname { det } F = f ( \theta )$ ; confidence 0.970
+
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230113.png ; $\phi ( \lambda ( T T ^ { \prime } ) )$ ; confidence 0.973
  
61. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010128.png ; $i : H ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ ; confidence 0.868
+
61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202506.png ; $C = \frac { \operatorname { det } \mu } { \operatorname { trace } ^ { 2 } \mu } \text { or } C ^ { \prime } = \frac { \operatorname { det } \mu } { \operatorname { trace } \mu }$ ; confidence 0.973
  
62. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068170/o06817010.png ; $Z _ { n } ( t ) = \sqrt { n } ( F _ { n } ( t ) - t )$ ; confidence 0.957
+
62. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013032.png ; $R > r$ ; confidence 0.973
  
63. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006034.png ; $A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * }$ ; confidence 0.997
+
63. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045037.png ; $x _ { 1 } < x _ { 2 }$ ; confidence 0.973
  
64. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006035.png ; $A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 }$ ; confidence 0.992
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040117.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { D } T )$ ; confidence 0.973
  
65. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060159.png ; $\Delta \otimes \Delta \cong K _ { X }$ ; confidence 0.804
+
65. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001079.png ; $\omega ^ { c } = \gamma$ ; confidence 0.973
  
66. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o1200502.png ; $\varphi : R _ { + } \rightarrow R _ { + }$ ; confidence 0.995
+
66. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200503.png ; $F ( T )$ ; confidence 0.973
  
67. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007085.png ; $u \in \operatorname { PSH } ( C ^ { n } )$ ; confidence 0.314
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620221.png ; $\mu _ { ac } ( A ) > 0$ ; confidence 0.973
  
68. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007067.png ; $L \in \operatorname { PSH } ( C ^ { n } )$ ; confidence 0.323
+
68. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016750/b01675060.png ; $q \rightarrow 0$ ; confidence 0.973
  
69. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q1200509.png ; $F ( x ^ { k } ) + D F ( x ^ { k } ) ( x - x ^ { k } ) = 0$ ; confidence 0.996
+
69. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007030.png ; $m ( P )$ ; confidence 0.973
  
70. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005025.png ; $x ^ { k + 1 } = x ^ { k } + \alpha _ { k } d ^ { k }$ ; confidence 0.951
+
70. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002037.png ; $u \in U M$ ; confidence 0.973
  
71. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070114.png ; $b c = c b , d \alpha - a d = ( q - q ^ { - 1 } ) b c$ ; confidence 0.888
+
71. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150113.png ; $k > \operatorname { max } ( i ( F ) , 0 )$ ; confidence 0.973
  
72. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004045.png ; $\frac { \partial u } { \partial n } = 0$ ; confidence 0.995
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027014.png ; $S ^ { * } S = 1$ ; confidence 0.973
  
73. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007024.png ; $H _ { + } \subset H _ { 0 } \subset H _ { - }$ ; confidence 0.989
+
73. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001012.png ; $R _ { S } ^ { * }$ ; confidence 0.973
  
74. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080134.png ; $( u , \varphi ; ) = \lambda _ { j } w _ { j }$ ; confidence 0.378
+
74. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005092.png ; $| z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M$ ; confidence 0.973
  
75. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011020.png ; $\operatorname { Re } s = \sigma = 1 / 2$ ; confidence 0.729
+
75. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064068.png ; $s \in L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.973
  
76. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r1301207.png ; $[ x , y ] = \{ u \in E : x \prec u \prec y \}$ ; confidence 0.950
+
76. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029018.png ; $\{ s _ { k } ( x ) \} _ { 0 } ^ { n }$ ; confidence 0.973
  
77. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
+
77. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090205.png ; $g _ { \chi } ^ { * } ( T )$ ; confidence 0.973
  
78. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130070/s1300707.png ; $\phi ( f ( x ) ) = g ( x ) \phi ( x ) + h ( x )$ ; confidence 0.999
+
78. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008050.png ; $\lambda \in C$ ; confidence 0.973
  
79. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
+
79. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006069.png ; $T _ { B } \circ T _ { A } = T _ { A } \circ T _ { B }$ ; confidence 0.973
  
80. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005015.png ; $\{ \gamma _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.987
+
80. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004050.png ; $\eta ( W ) d g ( W ) \in i R$ ; confidence 0.973
  
81. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s1303408.png ; $L _ { + } = A L _ { - } + A ^ { - 1 } L _ { \infty }$ ; confidence 0.994
+
81. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006037.png ; $\mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.973
  
82. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017094.png ; $s _ { 1 } \geq \ldots \geq s _ { m } \geq 0$ ; confidence 0.820
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013074.png ; $T$ ; confidence 0.973
  
83. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022013.png ; $0 \leq p \leq \operatorname { dim } M$ ; confidence 0.977
+
83. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006023.png ; $z \in Z$ ; confidence 0.973
  
84. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054016.png ; $x _ { i j } ( a ) x _ { j } ( b ) = x _ { i j } ( a + b )$ ; confidence 0.234
+
84. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020240.png ; $B M O$ ; confidence 0.973
  
85. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026038.png ; $\partial _ { t } ^ { * } + \partial _ { t }$ ; confidence 0.999
+
85. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006048.png ; $| x _ { i } | > 0$ ; confidence 0.973
  
86. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058036.png ; $p = [ Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ] ^ { 1 / 2 } / I$ ; confidence 0.969
+
86. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632050.png ; $A ^ { \prime }$ ; confidence 0.973
  
87. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059056.png ; $c _ { - n } = c _ { n } , \quad n = 1,2 , \dots$ ; confidence 0.308
+
87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110111.png ; $m p ( z )$ ; confidence 0.973
  
88. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067098.png ; $GL ^ { 2 } ( n ) \rightarrow GL ^ { 1 } ( n )$ ; confidence 0.946
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032029.png ; $\operatorname { log } ( q / p )$ ; confidence 0.973
  
89. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067080.png ; $V ^ { * } = \operatorname { Hom } ( V , R )$ ; confidence 0.821
+
89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026023.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { n k }$ ; confidence 0.973
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s12029010.png ; $\sum _ { k = 1 } ^ { \infty } x _ { \pi } ( k )$ ; confidence 0.830
+
90. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840283.png ; $[ N x , x ] \geq 0$ ; confidence 0.973
  
91. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320119.png ; $\operatorname { ev } _ { X } ( \alpha )$ ; confidence 0.412
+
91. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008054.png ; $| w | \leq \rho _ { D }$ ; confidence 0.973
  
92. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064073.png ; $G ( a ) = \operatorname { exp } ( s ( 0 ) )$ ; confidence 0.533
+
92. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105068.png ; $N + 1$ ; confidence 0.973
  
93. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064068.png ; $s \in L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.973
+
93. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018018.png ; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.973
  
94. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065010.png ; $\rho _ { \aleph } + 1 = \Phi _ { N } + 1 ( 0 )$ ; confidence 0.337
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023026.png ; $f | _ { \Gamma }$ ; confidence 0.973
  
95. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070131.png ; $\omega : L _ { i } \rightarrow L _ { - i }$ ; confidence 0.703
+
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202203.png ; $( x , v ) \in R ^ { N } \times R ^ { N }$ ; confidence 0.973
  
96. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008044.png ; $( \epsilon x _ { 1 } , \epsilon y _ { 1 } )$ ; confidence 0.697
+
96. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012027.png ; $A q \subseteq R$ ; confidence 0.973
  
97. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014047.png ; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow Z$ ; confidence 0.972
+
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031016.png ; $\operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.973
  
98. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140164.png ; $q _ { \Lambda } : Z ^ { n } \rightarrow Z$ ; confidence 0.561
+
98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014041.png ; $f \pm ( x _ { 0 } )$ ; confidence 0.973
  
99. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140172.png ; $q _ { C } : Z ^ { ( l _ { C } ) } \rightarrow Z$ ; confidence 0.490
+
99. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041043.png ; $( P _ { n } )$ ; confidence 0.973
  
100. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015012.png ; $P : L ^ { 2 } ( T ) \rightarrow H ^ { 2 } ( T )$ ; confidence 0.961
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079035.png ; $M _ { 1 }$ ; confidence 0.973
  
101. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015065.png ; $E : L ^ { 2 } ( S ) \rightarrow H ^ { 2 } ( S )$ ; confidence 0.997
+
101. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019017.png ; $N \cap H = \{ 1 \}$ ; confidence 0.973
  
102. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014036.png ; $T _ { \phi \psi } = T _ { \phi } T _ { \psi }$ ; confidence 0.990
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023063.png ; $U = C ( S )$ ; confidence 0.973
  
103. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021035.png ; $L _ { m , n } = ( \phi _ { m } , L _ { \phi , n } )$ ; confidence 0.128
+
103. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203204.png ; $T : X \rightarrow L ^ { 1 }$ ; confidence 0.973
  
104. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960305.png ; $z ( t ) = \int _ { 0 } ^ { t } x ( \tau ) d \tau$ ; confidence 0.999
+
104. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029043.png ; $q \leq N$ ; confidence 0.973
  
105. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020114.png ; $p ( x _ { 0 } , y _ { 0 } ) = q ( x _ { 0 } , y _ { 0 } )$ ; confidence 0.728
+
105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230144.png ; $\phi : X _ { n } \rightarrow Y$ ; confidence 0.973
  
106. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v1200407.png ; $\Delta ( G ) \leq \chi ^ { \prime } ( G )$ ; confidence 0.999
+
106. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047860/h047860125.png ; $S ( X )$ ; confidence 0.973
  
107. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011042.png ; $( x _ { m } , j + m l + U t , y _ { m , j } \pm b / 2 )$ ; confidence 0.764
+
107. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201904.png ; $\sigma : X \times X \rightarrow F$ ; confidence 0.973
  
108. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w1200104.png ; $c ^ { * } = C \backslash \{ 0 , \infty \}$ ; confidence 0.814
+
108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003089.png ; $T _ { E , \tau } R ^ { * }$ ; confidence 0.973
  
109. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
+
109. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006014.png ; $\delta ( - k ) = - \delta ( k ) , k \in R , \quad \delta ( \infty ) = 0$ ; confidence 0.973
  
110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006068.png ; $B \otimes A \rightarrow A \otimes B$ ; confidence 0.987
+
110. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320111.png ; $\operatorname { Ber } ( T ) = \operatorname { det } ( P - Q S ^ { - 1 } R ) \operatorname { det } ( S ) ^ { - 1 }$ ; confidence 0.973
  
111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110153.png ; $\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$ ; confidence 0.712
+
111. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100180.png ; $f ^ { - 1 } ( K ) \cap T$ ; confidence 0.973
  
112. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011025.png ; $( Op ( a ) ) ^ { * } = Op ( J \overline { a } )$ ; confidence 0.303
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121087.png ; $q ( z )$ ; confidence 0.973
  
113. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110107.png ; $H ( M u , M v ) = H ( u , v ) \circ \chi ^ { - 1 }$ ; confidence 0.726
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031018.png ; $\| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0$ ; confidence 0.973
  
114. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011046.png ; $\Xi M = \kappa x + \hat { \xi } \cdot D x$ ; confidence 0.133
+
114. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010118.png ; $SU ( n , 1 )$ ; confidence 0.973
  
115. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
+
115. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620119.png ; $( 1 / \pi ) \operatorname { Im } m + ( \lambda )$ ; confidence 0.973
  
116. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017012.png ; $Z ( G ) \leq \omega ( G ) \leq Z _ { 2 } ( G )$ ; confidence 0.998
+
116. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015026.png ; $S = J \Delta ^ { 1 / 2 }$ ; confidence 0.973
  
117. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021011.png ; $n \equiv 0 ( \operatorname { mod } 4 )$ ; confidence 0.981
+
117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003080.png ; $* 1$ ; confidence 0.973
  
118. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021035.png ; $q \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.997
+
118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010120.png ; $M = ( m _ { i } : A \rightarrow A _ { i } ) _ { I }$ ; confidence 0.973
  
119. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021034.png ; $p \equiv 1 ( \operatorname { mod } 4 )$ ; confidence 0.992
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010045.png ; $L _ { 1 / 2,1 } = 1 / 2$ ; confidence 0.972
  
120. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001054.png ; $\{ E _ { t } ^ { S } \} _ { 1 } \leq s , t \leq n$ ; confidence 0.370
+
120. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001020.png ; $\operatorname { sup } _ { x \neq y \in \Omega } | u ( x ) - u ( y ) | ( \sigma | x - y | ) ^ { - 1 } < \infty$ ; confidence 0.972
  
121. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001037.png ; $R _ { V } ( u \otimes v ) = R ( u \otimes v )$ ; confidence 0.296
+
121. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521045.png ; $a b$ ; confidence 0.972
  
122. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003029.png ; $L = \operatorname { det } ( V _ { \pm } )$ ; confidence 0.992
+
122. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014016.png ; $N ( \lambda )$ ; confidence 0.972
  
123. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003056.png ; $f ( t ) = O ( ( 1 + | t | ) ^ { - 1 - \epsilon } )$ ; confidence 0.995
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a1300807.png ; $g ( x ) = h ( x ) / \alpha$ ; confidence 0.972
  
124. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200108.png ; $\{ f _ { \alpha } : \alpha \in GF ( m ) \}$ ; confidence 0.663
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006023.png ; $\| A \| _ { 1 }$ ; confidence 0.972
  
125. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007034.png ; $Z G \simeq Z H \Rightarrow G \simeq H$ ; confidence 0.332
+
125. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010034.png ; $\nu > 0$ ; confidence 0.972
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
+
126. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v1100509.png ; $f _ { Q }$ ; confidence 0.972
  
127. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001095.png ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958
+
127. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010070.png ; $g \in C ^ { G }$ ; confidence 0.972
  
128. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
+
128. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020129.png ; $M ^ { \perp \perp \perp } = M ^ { \perp }$ ; confidence 0.972
  
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018018.png ; $x \leq y \Leftrightarrow \exists z : x = y + z ^ { 2 }$ ; confidence 0.972
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055
+
130. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011021.png ; $\{ t _ { i } \}$ ; confidence 0.972
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240228.png ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942
+
131. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008046.png ; $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$ ; confidence 0.972
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040409.png ; $Mod ^ { * } L D = P _ { SD } Mod ^ { * } L _ { D }$ ; confidence 0.326
+
132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023028.png ; $\sigma ^ { 1 } : M \rightarrow E ^ { 1 }$ ; confidence 0.972
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040264.png ; $E ( x , y ) = \{ x \leftrightarrow y \}$ ; confidence 0.978
+
133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010041.png ; $F _ { \nu }$ ; confidence 0.972
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050119.png ; $C ^ { 1 } ( [ 0 , T ] ; X ) \cap C ( [ 0 , T ] ; Y )$ ; confidence 0.966
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023056.png ; $K ( n \times m )$ ; confidence 0.972
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070118.png ; $\frac { d u } { d t } = A ( t , u ) u + f ( t , u )$ ; confidence 0.993
+
135. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003031.png ; $( U \otimes I \otimes \ldots ) \psi$ ; confidence 0.972
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008030.png ; $f ( x ) \operatorname { tg } ( x ; m , s )$ ; confidence 0.360
+
136. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010052.png ; $( i , y )$ ; confidence 0.972
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201102.png ; $\varphi ( \alpha , b , 0 ) = \alpha + b$ ; confidence 0.842
+
137. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025025.png ; $\alpha = \angle B A C$ ; confidence 0.972
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011013.png ; $\varphi ( 3,3,3 ) = 3 ^ { 3 ^ { 3 ^ { 3 } } }$ ; confidence 0.657
+
138. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201906.png ; $\int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) | F ( \tau ) | ^ { 2 } d \tau$ ; confidence 0.972
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030044.png ; $\phi : ( T V , d ) \rightarrow ( T W , d )$ ; confidence 0.997
+
139. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d03009010.png ; $P _ { \nu } = F _ { \nu } - m _ { \nu } w _ { \nu }$ ; confidence 0.972
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015037.png ; $G \subset \operatorname { GL } ( V )$ ; confidence 0.629
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008066.png ; $v _ { 1 } = d u / d t$ ; confidence 0.972
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015032.png ; $\operatorname { Ker } ( ad ) = \{ 0 \}$ ; confidence 0.610
+
141. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012076.png ; $t d$ ; confidence 0.972
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015081.png ; $Ad ^ { * } : G \rightarrow GL ( g ^ { * } )$ ; confidence 0.796
+
142. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024680/c02468023.png ; $X ^ { ( 1 ) }$ ; confidence 0.972
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201704.png ; $\int _ { a _ { 1 } } ^ { a _ { 2 } } p ( a , t ) d a$ ; confidence 0.180
+
143. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230131.png ; $X \sim \operatorname { RS } _ { p , n } ( \phi )$ ; confidence 0.972
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018023.png ; $\Gamma , \Delta \subseteq Fm _ { L }$ ; confidence 0.950
+
144. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014016.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , R ) = 0$ ; confidence 0.972
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027085.png ; $W ( \rho ) . W ( \overline { \rho } ) = 1$ ; confidence 0.488
+
145. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510130.png ; $w \in F ( v )$ ; confidence 0.972
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029020.png ; $HF _ { * } ^ { symp } ( M , L _ { 0 } , L _ { 1 } )$ ; confidence 0.255
+
146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200309.png ; $K = \{ f : \int | f | ^ { 2 } \leq 1 \}$ ; confidence 0.972
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029076.png ; $\phi _ { F } : M ( Q ) \rightarrow M ( Q )$ ; confidence 0.767
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013170/a01317032.png ; $L ( x )$ ; confidence 0.972
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501020.png ; $j r : B O _ { r } \rightarrow B O _ { r } + 1$ ; confidence 0.518
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230116.png ; $\tau _ { 1 } \geq \ldots \geq \tau _ { p } \geq 0$ ; confidence 0.972
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010034.png ; $F _ { S } ( t , x _ { 1 } , \ldots , x _ { S } ) =$ ; confidence 0.522
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026046.png ; $U \subset R ^ { n } \times [ 0,1 ]$ ; confidence 0.972
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010040.png ; $X _ { i } ( - t , x _ { 1 } , \ldots , x _ { N } )$ ; confidence 0.300
+
150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008020.png ; $( x , y , t ) \mapsto ( z , w ) = ( x + i y , t + i | z | ^ { 2 } )$ ; confidence 0.972
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021017.png ; $P ^ { + } \subset \mathfrak { h } ^ { * }$ ; confidence 0.430
+
151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d1201506.png ; $d e ^ { - 1 }$ ; confidence 0.972
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021074.png ; $V ( \mathfrak { g } , \mathfrak { b } )$ ; confidence 0.842
+
152. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006086.png ; $P _ { G } = ( V \cup E , < )$ ; confidence 0.972
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066037.png ; $0 \leq \operatorname { Re } s \leq 1$ ; confidence 0.847
+
153. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006024.png ; $l : = - \frac { d ^ { 2 } } { d x ^ { 2 } } + q ( x )$ ; confidence 0.972
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066035.png ; $| H f \| _ { * } \leq G \| f \| _ { \infty }$ ; confidence 0.253
+
154. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d0303305.png ; $E ^ { p } ( M )$ ; confidence 0.972
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010106.png ; $G ( Q ) = \operatorname { Sp } ( 2 n , F )$ ; confidence 0.684
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020014.png ; $W ^ { m + 1 }$ ; confidence 0.972
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002018.png ; $\| x \| ^ { 2 } \leq \| x ^ { 2 } + y ^ { 2 } \|$ ; confidence 0.759
+
156. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019028.png ; $C _ { G } ( n ) \leq N$ ; confidence 0.972
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009041.png ; $( 1 + a ^ { 2 } ) \frac { d \tau } { d \xi } =$ ; confidence 0.897
+
157. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230136.png ; $J : T M \rightarrow T M$ ; confidence 0.972
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009028.png ; $\operatorname { Re } p ( f , \tau ) > 0$ ; confidence 0.992
+
158. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004075.png ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300905.png ; $u _ { t } + u _ { x } + u u _ { x } + u _ { X X X } = 0$ ; confidence 0.178
+
159. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009068.png ; $\{ e _ { k } : k \geq 1 \}$ ; confidence 0.972
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150162.png ; $f _ { i } : \Theta \rightarrow [ 0,1 ]$ ; confidence 0.977
+
160. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h046300105.png ; $n \leq 3$ ; confidence 0.972
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150116.png ; $d ^ { * } : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.966
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460138.png ; $t , x$ ; confidence 0.972
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022044.png ; $M _ { f } ( t , x , \xi ) = M ( u ( t , x ) , \xi )$ ; confidence 0.676
+
162. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024027.png ; $f ( 2 k ) ( 0 ) = 0$ ; confidence 0.972
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b120220103.png ; $t _ { x } + 1 - t _ { x } \sim \varepsilon$ ; confidence 0.390
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006014.png ; $\frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } \cdot \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } \cdot \frac { \partial } { \partial \vartheta } ( \operatorname { sin } \vartheta \cdot \frac { \partial Y } { \partial \vartheta } ) +$ ; confidence 0.972
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022059.png ; $f ^ { 0 } ( x , \xi ) = M ( u ^ { 0 } ( x ) , \xi )$ ; confidence 0.999
+
164. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840386.png ; $D _ { \alpha , \beta } \subset C$ ; confidence 0.972
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022091.png ; $d \xi = c d v I ^ { \overline { y } - 1 } d I$ ; confidence 0.063
+
165. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180385.png ; $r = 0 \in ( - 1 , + 1 )$ ; confidence 0.972
  
166. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027078.png ; $\sum _ { i } \overline { m } _ { n } ( h ) h$ ; confidence 0.132
+
166. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012035.png ; $x \in ( 0 , \infty )$ ; confidence 0.972
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031086.png ; $| f | \operatorname { log } ^ { + } | f |$ ; confidence 0.931
+
167. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b015400101.png ; $\Psi _ { 2 }$ ; confidence 0.972
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031084.png ; $R S _ { R } ^ { ( n - 1 ) / 2 } f ( x ) = + \infty$ ; confidence 0.511
+
168. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015061.png ; $G ( \Omega )$ ; confidence 0.972
  
169. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031044.png ; $f \in L ^ { 1 } \cap L ^ { 2 } ( R ^ { 2 k + 1 } )$ ; confidence 0.971
+
169. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004031.png ; $W \cap U _ { \xi } = * \emptyset$ ; confidence 0.972
  
170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031082.png ; $R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$ ; confidence 0.495
+
170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017094.png ; $\operatorname { col } M ( n + 1 )$ ; confidence 0.972
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034049.png ; $( \varphi _ { n } ) _ { n = 0 } ^ { \infty }$ ; confidence 0.944
+
171. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a01184056.png ; $G$ ; confidence 0.972
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019032.png ; $U ( f ; M _ { 1 } , M _ { 2 } ; H _ { 1 } , H _ { 2 } )$ ; confidence 0.987
+
172. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028066.png ; $\phi \in A ( \tilde { D } )$ ; confidence 0.972
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037029.png ; $h ( g _ { j _ { 1 } } , \dots , g _ { j _ { r } } )$ ; confidence 0.532
+
173. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010026.png ; $b _ { i } \geq 0$ ; confidence 0.972
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020011.png ; $\mathfrak { g } = \mathfrak { g } ( A )$ ; confidence 0.998
+
174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300804.png ; $X = \epsilon x$ ; confidence 0.972
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020015.png ; $[ h _ { i } e _ { j } ] = \alpha _ { j } e _ { j }$ ; confidence 0.566
+
175. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002024.png ; $Z = R$ ; confidence 0.972
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200117.png ; $\alpha _ { j } ( h _ { i } ) = \alpha _ { j }$ ; confidence 0.169
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012059.png ; $A G _ { d } - 1 ( d , q )$ ; confidence 0.972
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020094.png ; $\mathfrak { g } ^ { \alpha } < \infty$ ; confidence 0.900
+
177. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003036.png ; $K ( H ^ { * } \operatorname { Map } ( Z , Y ) , H ^ { * } X ) \rightarrow$ ; confidence 0.972
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040056.png ; $S = S ^ { + } \cup S ^ { - } \subset h ^ { * }$ ; confidence 0.298
+
178. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003055.png ; $\frac { s ^ { \prime } } { s } = e ^ { - x / k }$ ; confidence 0.972
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204207.png ; $\otimes : C \times C \rightarrow C$ ; confidence 0.966
+
179. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052038.png ; $L _ { 2 } ( \Omega )$ ; confidence 0.972
  
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430110.png ; $\beta \alpha = q ^ { 2 } \alpha \beta$ ; confidence 0.995
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430161.png ; $q \rightarrow 1$ ; confidence 0.972
  
181. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430124.png ; $k \langle u ^ { i } \square j \rangle$ ; confidence 0.774
+
181. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028032.png ; $h ^ { \Pi } \in [ 0,1 ]$ ; confidence 0.972
  
182. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043018.png ; $\Delta : B \rightarrow B \otimes B$ ; confidence 0.986
+
182. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070125.png ; $\{ h ( t , x ) \} \forall x \in E$ ; confidence 0.972
  
183. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046049.png ; $\chi ( h ) = \chi _ { e } ( h ) + \chi f ( h )$ ; confidence 0.709
+
183. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180306.png ; $( R ( \nabla ) \otimes 1 ) g \in \otimes ^ { 4 } E$ ; confidence 0.972
  
184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026021.png ; $d [ f / \| f \| , \partial K , S ^ { x - 1 } ]$ ; confidence 0.165
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164066.png ; $i > 0$ ; confidence 0.972
  
185. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028052.png ; $X \mapsto D _ { 2 } , H \times \Omega X$ ; confidence 0.556
+
185. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200509.png ; $\psi ( x , y , t ) = \psi _ { 0 } ( y )$ ; confidence 0.972
  
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052074.png ; $B _ { n + 1 } = B _ { n } + u _ { n } v _ { n } ^ { T }$ ; confidence 0.470
+
186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w1201406.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , N ) = 0$ ; confidence 0.972
  
187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052022.png ; $F ^ { \prime } ( x _ { c } ) s = - F ( x _ { c } )$ ; confidence 0.760
+
187. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002015.png ; $\alpha ( T E ) \leq k \alpha ( E )$ ; confidence 0.972
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029086.png ; $i \neq \operatorname { dim } _ { A } M$ ; confidence 0.934
+
188. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014047.png ; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow Z$ ; confidence 0.972
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200907.png ; $G / C _ { G } ( \langle x \rangle ^ { G } )$ ; confidence 0.943
+
189. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230141.png ; $[ P , P ]$ ; confidence 0.972
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002035.png ; $\int _ { 0 } ^ { \infty } \mu _ { t } d t / t$ ; confidence 0.996
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211028.png ; $k > m$ ; confidence 0.972
  
191. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004043.png ; $\langle w , \zeta - z \rangle \neq 0$ ; confidence 0.949
+
191. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002039.png ; $A ^ { \alpha } f$ ; confidence 0.972
  
192. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006036.png ; $W = \langle A _ { 1 } , \dots , A _ { r } \}$ ; confidence 0.221
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056014.png ; $\frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }$ ; confidence 0.972
  
193. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015074.png ; $\Delta u \in G ^ { \infty } ( \Omega )$ ; confidence 0.994
+
193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034030.png ; $H ^ { * } ( M ; Z )$ ; confidence 0.972
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160154.png ; $( \operatorname { log } n ) ^ { O ( 1 ) }$ ; confidence 0.761
+
194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010062.png ; $26$ ; confidence 0.972
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180145.png ; $\theta \otimes \theta \in S ^ { 2 } E$ ; confidence 0.790
+
195. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021020.png ; $W = \left( \begin{array} { c c c c } { A } & { B } & { C } & { D } \\ { - B } & { A } & { - D } & { C } \\ { - C } & { D } & { A } & { - B } \\ { - D } & { - C } & { B } & { A } \end{array} \right)$ ; confidence 0.972
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180403.png ; $S ( g ) = 0 \in C ^ { \infty } ( \hat { M } )$ ; confidence 0.813
+
196. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017034.png ; $G / \omega ( G )$ ; confidence 0.971
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c1301901.png ; $\varphi : R \times X \rightarrow X$ ; confidence 0.996
+
197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220249.png ; $i , j \in Z$ ; confidence 0.971
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020050.png ; $T S ^ { k } \otimes C \rightarrow \xi$ ; confidence 0.593
+
198. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060172.png ; $i \frac { \partial f } { \partial t _ { 2 } } + A _ { 2 } f = \Phi ^ { * } \sigma _ { 2 } u$ ; confidence 0.971
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210111.png ; $\theta _ { n } = \theta + h / \sqrt { n }$ ; confidence 0.760
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011020.png ; $A ( 3 , n ) = 2 ^ { n + 3 } - 3$ ; confidence 0.971
  
200. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210139.png ; $\{ \alpha _ { n } \} \subseteq \{ n \}$ ; confidence 0.941
+
200. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013039.png ; $\Psi _ { + }$ ; confidence 0.971
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025050.png ; $A ( t ) = \int _ { 0 } ^ { t } \alpha ( s ) d s$ ; confidence 0.999
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240439.png ; $( N ) \leq 1$ ; confidence 0.971
  
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029053.png ; $\operatorname { Ker } ( \partial )$ ; confidence 0.761
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029011.png ; $( g , m ) \rightarrow \square ^ { g } m$ ; confidence 0.735
+
203. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002010.png ; $\| \hat { f } \| _ { 2 } = 1$ ; confidence 0.971
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030035.png ; $n = \operatorname { dim } ( H ) \geq 2$ ; confidence 0.992
+
204. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090206.png ; $G _ { \chi } ^ { * } ( T )$ ; confidence 0.971
  
205. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020121.png ; $\vec { \mathfrak { c } } _ { t } ^ { 2 } < 0$ ; confidence 0.134
+
205. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015066.png ; $0 < U < I _ { p } , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 )$ ; confidence 0.971
  
206. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027022.png ; $E _ { [ \theta n ] } ( f ) = O ( E _ { n } ( f ) )$ ; confidence 0.921
+
206. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014041.png ; $E = S \cup T$ ; confidence 0.971
  
207. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200704.png ; $\sigma _ { 1 } , \ldots , \sigma _ { t }$ ; confidence 0.642
+
207. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013012.png ; $\frac { d N } { d t } = \lambda N ( 1 - \frac { N } { K } )$ ; confidence 0.971
  
208. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d12011018.png ; $\sum _ { j \in I } f ( x _ { i j } ) < \infty$ ; confidence 0.757
+
208. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007084.png ; $V \times V \rightarrow R$ ; confidence 0.971
  
209. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017014.png ; $\lambda _ { k } \rightarrow \infty$ ; confidence 0.999
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201701.png ; $\gamma \equiv \gamma ^ { ( 2 n ) }$ ; confidence 0.971
  
210. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026023.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { n k }$ ; confidence 0.973
+
210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045039.png ; $x _ { 1 } > x _ { 2 }$ ; confidence 0.971
  
211. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029045.png ; $\sum _ { q = 1 } ^ { N } \varphi ( q ) f ( q )$ ; confidence 0.989
+
211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058026.png ; $I = ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.971
  
212. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030025.png ; $\gamma : R ^ { n } \rightarrow R ^ { k }$ ; confidence 0.881
+
212. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021014.png ; $S \neq 0$ ; confidence 0.971
  
213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030034.png ; $d Z ( t ) = g ( t , Z ( t ) ) d \tilde { B } ( t )$ ; confidence 0.985
+
213. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754803.png ; $( p \& q ) \supset p$ ; confidence 0.971
  
214. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001010.png ; $\operatorname { deg } f _ { i } \leq d$ ; confidence 0.990
+
214. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013019.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.971
  
215. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002015.png ; $( \partial / \partial x _ { k } ) u ( x )$ ; confidence 0.986
+
215. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022038.png ; $\sum _ { 1 } ^ { m } r _ { j } = n$ ; confidence 0.971
  
216. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007058.png ; $F ^ { ( k + 1 ) } \in \{ \Gamma , k + 2 , v \}$ ; confidence 0.872
+
216. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025025.png ; $u v = F ^ { - 1 } ( F u ^ { * } F v )$ ; confidence 0.971
  
217. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007087.png ; $H ^ { 1 } = H ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.897
+
217. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548015.png ; $A \& B \Leftrightarrow \neg ( A \supset \neg B ) , \quad A \vee B \Leftrightarrow \neg A \supset B$ ; confidence 0.971
  
218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070107.png ; $\hat { H } ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.583
+
218. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180457.png ; $R ^ { + } = ( 0 , \infty )$ ; confidence 0.971
  
219. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004044.png ; $( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$ ; confidence 0.766
+
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031044.png ; $f \in L ^ { 1 } \cap L ^ { 2 } ( R ^ { 2 k + 1 } )$ ; confidence 0.971
  
220. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023028.png ; $\sigma ^ { 1 } : M \rightarrow E ^ { 1 }$ ; confidence 0.972
+
220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203004.png ; $d Y ( t ) = h ( t , X ( t ) , Y ( t ) ) d t + g ( t , Y ( t ) ) d \tilde { B } ( t )$ ; confidence 0.971
  
221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023044.png ; $\sigma _ { t } ( x ) = ( x , y ( x ) + t z ( x ) )$ ; confidence 0.959
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009034.png ; $\operatorname { Re } p _ { 2 } ( \xi , \tau ) > 0$ ; confidence 0.971
  
222. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006050.png ; $\overline { X } = X \cup \{ \omega \}$ ; confidence 0.612
+
222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012011.png ; $[ x _ { 1 } , y _ { 1 } ] + [ x _ { 2 } , y _ { 2 } ] = [ x _ { 1 } + x _ { 2 } , y _ { 1 } + y _ { 2 } ]$ ; confidence 0.971
  
223. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007058.png ; $+ O ( T ^ { 1 / 3 } ) + O ( N ^ { 2 } T ^ { - 1 / 2 } )$ ; confidence 0.998
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130100.png ; $A K N S$ ; confidence 0.971
  
224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005017.png ; $\operatorname { gcd } ( n , p ) \neq 1$ ; confidence 0.999
+
224. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023042.png ; $( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$ ; confidence 0.971
  
225. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009047.png ; $n _ { 1 } + 2 n _ { 2 } + \ldots + k n _ { k } = n$ ; confidence 0.966
+
225. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006099.png ; $k \times r$ ; confidence 0.971
  
226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300905.png ; $U _ { - n } ( x ) = ( - 1 ) ^ { n - 1 } U _ { n } ( x )$ ; confidence 0.979
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040533.png ; $C : P ( A ) \rightarrow P ( A )$ ; confidence 0.971
  
227. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100161.png ; $\| u - u v \| _ { A _ { p } ( G ) } < \epsilon$ ; confidence 0.446
+
227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016066.png ; $x _ { 2 } ^ { \prime } = x _ { 3 } ^ { \prime } = \frac { 1 } { 2 } [ ( x _ { 1 } + x _ { 2 } ) s - x _ { 1 } v ]$ ; confidence 0.971
  
228. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009061.png ; $O _ { \{ 0 \} } ^ { \prime } = B _ { \{ 0 \} }$ ; confidence 0.929
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160153.png ; $f ( y i t )$ ; confidence 0.971
  
229. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160111.png ; $( \phi _ { 1 } \& \ldots \& \phi _ { n } )$ ; confidence 0.797
+
229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006026.png ; $L ^ { 2 } ( R _ { + } )$ ; confidence 0.971
  
230. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014038.png ; $| \zeta | > 1 , | \zeta ^ { \prime } | > 1$ ; confidence 0.993
+
230. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260241.png ; $M ( B )$ ; confidence 0.971
  
231. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150113.png ; $k > \operatorname { max } ( i ( F ) , 0 )$ ; confidence 0.973
+
231. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010148.png ; $n < 6$ ; confidence 0.971
  
232. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024041.png ; $L - 1 : = ( 0 ) \oplus U ( \varepsilon )$ ; confidence 0.723
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008043.png ; $V \times L ^ { 2 } ( \Omega )$ ; confidence 0.971
  
233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023021.png ; $K _ { i } \in \Omega ^ { k _ { i } } ( M ; T M )$ ; confidence 0.877
+
233. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220209.png ; $i = m = 1$ ; confidence 0.971
  
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302906.png ; $\otimes : L \times L \rightarrow L$ ; confidence 0.942
+
234. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002037.png ; $a b > 1$ ; confidence 0.971
  
235. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339011.png ; $h \rightarrow \delta f ( x _ { 0 } , h )$ ; confidence 0.999
+
235. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007036.png ; $| x | > a$ ; confidence 0.971
  
236. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602044.png ; $\| R C ( 1 - P C ) ^ { - 1 } \| _ { \infty } < 1$ ; confidence 0.977
+
236. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005052.png ; $( x y ) ^ { p } = x ^ { p } y ^ { p } z$ ; confidence 0.971
  
237. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002014.png ; $i \in \{ 1 , \dots , n \} \backslash I$ ; confidence 0.537
+
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040345.png ; $\tilde { \Omega } _ { D } F =$ ; confidence 0.971
  
238. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002037.png ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j }$ ; confidence 0.916
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040062.png ; $B \subset G$ ; confidence 0.971
  
239. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005034.png ; $+ \int _ { C _ { N } } \phi _ { ; m } \rho d y$ ; confidence 0.907
+
239. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026013.png ; $\Gamma ( L ^ { 2 } ( R ^ { n } ) )$ ; confidence 0.971
  
240. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807041.png ; $X = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } X$ ; confidence 0.937
+
240. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520246.png ; $\sum _ { i = 1 } ^ { m } d _ { i } = n$ ; confidence 0.971
  
241. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001019.png ; $\operatorname { sgn } ( \sigma ) = 1$ ; confidence 1.000
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002019.png ; $x , y \in J$ ; confidence 0.971
  
242. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002054.png ; $| x _ { 1 } | \geq \ldots \geq | x _ { m } |$ ; confidence 0.838
+
242. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003033.png ; $f : L A \times B \rightarrow C$ ; confidence 0.971
  
243. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c02325067.png ; $1 \leq i _ { 1 } < \ldots < i _ { k } \leq n$ ; confidence 0.921
+
243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007060.png ; $F ^ { ( k + 1 ) } = f$ ; confidence 0.971
  
244. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002026.png ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206
+
244. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005015.png ; $L _ { 2 } ( R _ { + } ; \operatorname { cosh } ( \pi \tau ) )$ ; confidence 0.971
  
245. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002055.png ; $| y _ { 1 } | \geq \ldots \geq | y _ { m } |$ ; confidence 0.868
+
245. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022020.png ; $\partial M \neq \emptyset$ ; confidence 0.971
  
246. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060166.png ; $| F ( 2 x ) + A ( x , x ) | \leq c \sigma ( x )$ ; confidence 0.594
+
246. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018015.png ; $( M )$ ; confidence 0.971
  
247. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006079.png ; $S \Rightarrow \rho \Rightarrow q$ ; confidence 0.898
+
247. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006076.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma$ ; confidence 0.971
  
248. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007045.png ; $A ( \alpha ^ { \prime } , \alpha 0 , k )$ ; confidence 0.751
+
248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008067.png ; $I$ ; confidence 0.971
  
249. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008030.png ; $m \equiv \langle M \rangle _ { T } / N$ ; confidence 0.966
+
249. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008030.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$ ; confidence 0.971
  
250. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090207.png ; $k ^ { \prime } = k _ { \chi } ( \mu _ { p } )$ ; confidence 0.681
+
250. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003036.png ; $\rho ( x , y ) w ( x , y )$ ; confidence 0.971
  
251. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009034.png ; $E _ { 1 } ( k ) = r _ { 1 } ( k ) + r _ { 2 } ( k ) - 1$ ; confidence 0.994
+
251. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300908.png ; $F _ { \nu } = m _ { \nu } w _ { \nu } + P _ { \nu }$ ; confidence 0.971
  
252. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001065.png ; $\operatorname { det } J F ( x ) \neq 0$ ; confidence 0.992
+
252. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110167.png ; $g + h$ ; confidence 0.971
  
253. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018033.png ; $M \rightarrow R$ ; confidence 0.971
  
254. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002020.png ; $\epsilon = \operatorname { max } E$ ; confidence 0.221
+
254. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007089.png ; $1 \leq h \leq H$ ; confidence 0.971
  
255. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001043.png ; $\operatorname { span } ( D ) = 4 c ( D )$ ; confidence 0.774
+
255. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004044.png ; $\varphi : G ^ { \prime } \rightarrow R ^ { 2 }$ ; confidence 0.970
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145072.png ; $\operatorname { deg } K _ { X } = 2 g - 2$ ; confidence 0.913
+
256. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007080.png ; $\zeta ( 1 / 2 + i t ) \ll t ^ { p } \operatorname { log } t$ ; confidence 0.970
  
257. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k1200504.png ; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961
+
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130107.png ; $\| f / \varphi \| _ { p } \leq \| f \| _ { p }$ ; confidence 0.970
  
258. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002010.png ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) > 0$ ; confidence 0.920
+
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004095.png ; $L _ { \infty }$ ; confidence 0.970
  
259. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002015.png ; $( x _ { j } - x _ { k } ) ( y _ { j } - y _ { k } ) < 0$ ; confidence 0.926
+
259. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021011.png ; $K \mapsto h _ { K }$ ; confidence 0.970
  
260. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010027.png ; $P = \{ ( z _ { j } , z _ { j } ^ { \prime } ) \}$ ; confidence 0.991
+
260. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m1201602.png ; $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ ; confidence 0.970
  
261. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840376.png ; $[ f , g ] = \int _ { \alpha } ^ { b } f g r d x$ ; confidence 0.905
+
261. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021900/c02190072.png ; $2 N$ ; confidence 0.970
  
262. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840143.png ; $\operatorname { Im } [ T x , x ] \geq 0$ ; confidence 0.919
+
262. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004069.png ; $w _ { 1 } = ( 1 + \operatorname { sign } ( c ) ) / 2$ ; confidence 0.970
  
263. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840256.png ; $c ( A ) \subset R \cup \{ \infty \}$ ; confidence 0.588
+
263. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033021.png ; $H _ { c } ^ { * } ( M , R )$ ; confidence 0.970
  
264. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840401.png ; $( N _ { f } ( z _ { i } , z _ { j } ) ) _ { 1 } ^ { n }$ ; confidence 0.675
+
264. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540127.png ; $K _ { 2 } R$ ; confidence 0.970
  
265. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003011.png ; $\operatorname { Ric } ( \omega ) = 0$ ; confidence 0.997
+
265. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016420/b0164209.png ; $1 - p$ ; confidence 0.970
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702085.png ; $H _ { l } ^ { i } = H ^ { i } ( X , Q ) \otimes Q$ ; confidence 0.320
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030032.png ; $\overline { \theta ( A ) } = B$ ; confidence 0.970
  
267. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l1100307.png ; $\frac { d P } { d \mu } \in L _ { 1 } ( \mu )$ ; confidence 0.997
+
267. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840193.png ; $\leq 2 \kappa + 1$ ; confidence 0.970
  
268. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003087.png ; $\tau : R ^ { * } \rightarrow H ^ { * } B E$ ; confidence 0.956
+
268. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004065.png ; $| \lambda | = n$ ; confidence 0.970
  
269. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003039.png ; $H ^ { * } \operatorname { Map } ( Z , Y )$ ; confidence 0.968
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009088.png ; $f ( z ) \in B ( \alpha / m )$ ; confidence 0.970
  
270. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005021.png ; $L _ { 1 } ( R _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 0.365
+
270. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070233.png ; $T \cap k ( C _ { 2 } ) = T _ { 2 }$ ; confidence 0.970
  
271. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001076.png ; $0 \leq s _ { 1 } + \ldots + s _ { n } \leq N$ ; confidence 0.826
+
271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070114.png ; $g \in C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.970
  
272. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006090.png ; $\overline { H } \supset H \supset D$ ; confidence 0.992
+
272. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040175.png ; $B \subset \Omega \times G ( n , m )$ ; confidence 0.970
  
273. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010078.png ; $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ ; confidence 0.678
+
273. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202404.png ; $\psi \rightarrow \psi [ 1 ]$ ; confidence 0.970
  
274. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120144.png ; $\sigma _ { 1 } , \ldots , \sigma _ { e }$ ; confidence 0.367
+
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004023.png ; $\varphi : X \times W \rightarrow \overline { R }$ ; confidence 0.970
  
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012086.png ; $K _ { \text { tot } } s = \overline { Q }$ ; confidence 0.060
+
275. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008039.png ; $w ^ { H }$ ; confidence 0.970
  
276. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012062.png ; $O _ { p } = \{ x \in L : | x | _ { p } \leq 1 \}$ ; confidence 0.145
+
276. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007033.png ; $F ^ { k } ( 2 , m ) =$ ; confidence 0.970
  
277. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l1301006.png ; $l _ { \alpha } p : = \{ x : \alpha x = p \}$ ; confidence 0.065
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016052.png ; $\beta _ { k }$ ; confidence 0.970
  
278. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170186.png ; $\operatorname { dim } ( K - L ) \leq 2$ ; confidence 0.995
+
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011048.png ; $\nabla \times H = \frac { 1 } { c } J , \nabla B = 0$ ; confidence 0.970
  
279. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170103.png ; $K ^ { 2 } / K ^ { 2 } \times I \searrow p t$ ; confidence 0.585
+
279. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o1200103.png ; $\operatorname { det } F = f ( \theta )$ ; confidence 0.970
  
280. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017032.png ; $R _ { i } \rightarrow w R _ { i } w ^ { - 1 }$ ; confidence 0.939
+
280. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i1300109.png ; $\chi = \chi _ { \lambda }$ ; confidence 0.970
  
281. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170120.png ; $K ^ { \prime 2 } \times I \searrow p t$ ; confidence 0.278
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021099.png ; $L ( T _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \Gamma h , \Gamma )$ ; confidence 0.970
  
282. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017024.png ; $K ^ { 2 } \swarrow L ^ { 3 } \searrow pt$ ; confidence 0.514
+
282. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026050.png ; $( t , \nu )$ ; confidence 0.970
  
283. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m06200014.png ; $X _ { n } = f ( Z _ { n } , \dots , Z _ { n } + m )$ ; confidence 0.446
+
283. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008027.png ; $( x , y ) \mapsto ( x ^ { 2 } / 2 + i y )$ ; confidence 0.970
  
284. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003060.png ; $F _ { \sigma } ( x ) = \Phi ( x / \sigma )$ ; confidence 0.995
+
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120114.png ; $Q ( \theta | \theta ^ { * } )$ ; confidence 0.970
  
285. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003044.png ; $F _ { \theta } ( x ) = \Phi ( x - \theta )$ ; confidence 0.998
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009082.png ; $L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$ ; confidence 0.970
  
286. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007026.png ; $\delta = M ( 1 + x + y - x y ) = 1.7916228$ ; confidence 0.989
+
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020088.png ; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970
  
287. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007058.png ; $\operatorname { log } \sigma _ { 1 }$ ; confidence 0.978
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042060.png ; $K _ { 1 }$ ; confidence 0.970
  
288. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
+
288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018056.png ; $M = M ^ { \perp \perp }$ ; confidence 0.970
  
289. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013068.png ; $\delta _ { ( 1 ) } < K _ { ( 1 ) } / K _ { ( 2 ) }$ ; confidence 0.229
+
289. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007064.png ; $L _ { E } ^ { * } ( z ) = \operatorname { limsup } _ { w \rightarrow z } L _ { E } ( w )$ ; confidence 0.970
  
290. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013065.png ; $\delta _ { ( 2 ) } < K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.126
+
290. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005069.png ; $\Theta _ { \Delta } ( z )$ ; confidence 0.970
  
291. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013059.png ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194
+
291. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602048.png ; $\Phi ^ { - } ( t _ { 0 } )$ ; confidence 0.970
  
292. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m1301305.png ; $\{ e _ { 1 } , \dots , e _ { \epsilon } \}$ ; confidence 0.681
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200106.png ; $\{ x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \}$ ; confidence 0.970
  
293. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014073.png ; $0 < r < \text { dist } ( x , \partial D )$ ; confidence 0.693
+
293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055053.png ; $b _ { p } ( x ) = \operatorname { sup } _ { \gamma } b _ { \gamma } ( x )$ ; confidence 0.970
  
294. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021039.png ; $\psi ( K ) = \lambda [ K - s ( K ) ] + s ( K )$ ; confidence 0.999
+
294. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003043.png ; $\alpha = \pi / 2$ ; confidence 0.970
  
295. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020031.png ; $H ^ { 2 } ( \mathfrak { g } , H ^ { 0 } ( M ) )$ ; confidence 0.774
+
295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023027.png ; $\sigma ^ { 1 }$ ; confidence 0.970
  
296. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020024.png ; $\gamma \circ \alpha ^ { \prime } = 0$ ; confidence 0.987
+
296. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s0860209.png ; $| \phi ( t _ { 1 } ) - \phi ( t _ { 2 } ) | \leq C | t _ { 1 } - t _ { 2 } | ^ { \alpha } , \quad 0 < \alpha \leq 1$ ; confidence 0.970
  
297. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064420/m0644209.png ; $q = \operatorname { exp } ( 2 \pi i z )$ ; confidence 0.996
+
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034067.png ; $z _ { 0 } = 0$ ; confidence 0.970
  
298. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022069.png ; $p = \operatorname { exp } ( 2 \pi i w )$ ; confidence 0.968
+
298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010074.png ; $L ( s )$ ; confidence 0.970
  
299. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023042.png ; $( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$ ; confidence 0.971
+
299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044044.png ; $k G$ ; confidence 0.970
  
300. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230102.png ; $X \rightarrow Y \leftarrow X ^ { + }$ ; confidence 0.920
+
300. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025059.png ; $\overline { O K } = \frac { \overline { O \Omega } } { \operatorname { cos } \omega }$ ; confidence 0.970

Revision as of 00:10, 13 February 2020

List

1. b11002050.png ; $u \neq 0$ ; confidence 0.974

2. c13019045.png ; $\varphi ( t , x ) = e ^ { t A } x$ ; confidence 0.974

3. s12034068.png ; $S ^ { 1 } = R / Z$ ; confidence 0.974

4. c13007013.png ; $X = t ^ { 2 }$ ; confidence 0.974

5. e120070143.png ; $H ^ { 0 }$ ; confidence 0.974

6. g13003044.png ; $j \geq j 0 \}$ ; confidence 0.974

7. a01095068.png ; $x ^ { i } = x ^ { i } ( t )$ ; confidence 0.974

8. c1300905.png ; $( N + 1 )$ ; confidence 0.974

9. h12012034.png ; $\Phi = \overline { \phi } d \overline { \phi }$ ; confidence 0.974

10. b110220161.png ; $\operatorname { det } ( r _ { D } )$ ; confidence 0.974

11. l058430142.png ; $E _ { 8 } ^ { ( 1 ) }$ ; confidence 0.974

12. p12015019.png ; $\chi _ { K }$ ; confidence 0.974

13. b13001043.png ; $V _ { i } = F _ { i } / \Gamma _ { i }$ ; confidence 0.974

14. a13025023.png ; $D _ { i } \in D$ ; confidence 0.974

15. g1200107.png ; $( G _ { b } ^ { \alpha } f ) ( \omega ) = \int _ { - \infty } ^ { \infty } [ e ^ { - i \omega t } f ( t ) ] g _ { \alpha } ( t - b ) d t$ ; confidence 0.974

16. e03500062.png ; $B ( x _ { i } , \epsilon ) \subset C$ ; confidence 0.974

17. z13003054.png ; $( Z h ) ( t , w ) = \int _ { 0 } ^ { 1 } ( Z R ) ( t - s , w ) ( Z f ) ( s , w ) d s$ ; confidence 0.974

18. c13015075.png ; $u \in G ^ { \infty } ( \Omega )$ ; confidence 0.974

19. e12023067.png ; $E ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.974

20. h04694056.png ; $A / I$ ; confidence 0.974

21. f12005025.png ; $X ^ { p } - X - a$ ; confidence 0.974

22. c12017039.png ; $H ( k ) \equiv ( \beta _ { i + j } ) _ { 0 \leq i , j \leq k }$ ; confidence 0.974

23. c02688030.png ; $s > 2$ ; confidence 0.974

24. i12006063.png ; $( P ) \leq k$ ; confidence 0.974

25. v0969109.png ; $\operatorname { lim } _ { T \rightarrow \infty } \frac { 1 } { T } \int _ { 0 } ^ { T } U _ { t } h d t = \hbar$ ; confidence 0.974

26. a12016090.png ; $USDF = \alpha + \beta$ ; confidence 0.974

27. t1202006.png ; $M _ { 2 } ( k ) = \operatorname { max } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.974

28. j12001057.png ; $F : C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.974

29. o13001046.png ; $F ^ { * } = F ^ { - 1 }$ ; confidence 0.974

30. p13007024.png ; $M f = \operatorname { det } ( \frac { \partial ^ { 2 } f } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.974

31. l1200306.png ; $H ^ { * } ( X , F _ { p } ) = R ^ { * }$ ; confidence 0.974

32. s12033026.png ; $( 4 u ^ { 2 } , 2 u ^ { 2 } - u , u ^ { 2 } - u )$ ; confidence 0.974

33. e12006058.png ; $J ^ { 1 } \Gamma : J ^ { 1 } Y \rightarrow J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.974

34. f12009071.png ; $H _ { K }$ ; confidence 0.973

35. b1203206.png ; $x , y , u , v \in L ^ { P } ( \mu )$ ; confidence 0.973

36. b12003026.png ; $( a b ) ^ { - 1 } > 1$ ; confidence 0.973

37. w120110125.png ; $R ^ { 2 n } \times R ^ { 2 n }$ ; confidence 0.973

38. i12005041.png ; $\theta \in \Theta _ { 1 } \subset \Theta - \Theta _ { 0 }$ ; confidence 0.973

39. l11002061.png ; $x ^ { + } = x \vee e$ ; confidence 0.973

40. i13003096.png ; $D _ { + } + D _ { + } ^ { * }$ ; confidence 0.973

41. j12001075.png ; $\dot { y } ( t ) = F ( y ( t ) )$ ; confidence 0.973

42. a130310123.png ; $T ^ { \prime } \leq o ( T )$ ; confidence 0.973

43. r130080126.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) }$ ; confidence 0.973

44. n067520254.png ; $d j = 0$ ; confidence 0.973

45. m13022054.png ; $Z ( g h ; z )$ ; confidence 0.973

46. z12002027.png ; $F _ { 2 } + \ldots + F _ { 2 k } = F _ { 2 k + 1 } - 1$ ; confidence 0.973

47. d0338501.png ; $x ^ { j }$ ; confidence 0.973

48. v120020113.png ; $( x _ { 0 } , y _ { 0 } ) \in \Gamma ( F )$ ; confidence 0.973

49. d032450242.png ; $U _ { y }$ ; confidence 0.973

50. b13007033.png ; $b = 1$ ; confidence 0.973

51. l05702060.png ; $H ^ { i } ( X , F ) = H ^ { i } ( X , F )$ ; confidence 0.973

52. i13008034.png ; $X \mapsto X ^ { \prime }$ ; confidence 0.973

53. f12004037.png ; $=$ ; confidence 0.973

54. c13008030.png ; $n = [ L : K ]$ ; confidence 0.973

55. z13008018.png ; $r ^ { 2 } = z z$ ; confidence 0.973

56. f12002034.png ; $R = P / Q$ ; confidence 0.973

57. i12008014.png ; $S _ { i } = 1$ ; confidence 0.973

58. e12015046.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.973

59. w12003010.png ; $L _ { 2 } ( \mu )$ ; confidence 0.973

60. s120230113.png ; $\phi ( \lambda ( T T ^ { \prime } ) )$ ; confidence 0.973

61. c1202506.png ; $C = \frac { \operatorname { det } \mu } { \operatorname { trace } ^ { 2 } \mu } \text { or } C ^ { \prime } = \frac { \operatorname { det } \mu } { \operatorname { trace } \mu }$ ; confidence 0.973

62. w13013032.png ; $R > r$ ; confidence 0.973

63. s13045037.png ; $x _ { 1 } < x _ { 2 }$ ; confidence 0.973

64. a130040117.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { D } T )$ ; confidence 0.973

65. g13001079.png ; $\omega ^ { c } = \gamma$ ; confidence 0.973

66. f1200503.png ; $F ( T )$ ; confidence 0.973

67. s130620221.png ; $\mu _ { ac } ( A ) > 0$ ; confidence 0.973

68. b01675060.png ; $q \rightarrow 0$ ; confidence 0.973

69. m12007030.png ; $m ( P )$ ; confidence 0.973

70. s13002037.png ; $u \in U M$ ; confidence 0.973

71. f120150113.png ; $k > \operatorname { max } ( i ( F ) , 0 )$ ; confidence 0.973

72. b13027014.png ; $S ^ { * } S = 1$ ; confidence 0.973

73. s13001012.png ; $R _ { S } ^ { * }$ ; confidence 0.973

74. q13005092.png ; $| z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M$ ; confidence 0.973

75. s13064068.png ; $s \in L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.973

76. d03029018.png ; $\{ s _ { k } ( x ) \} _ { 0 } ^ { n }$ ; confidence 0.973

77. i130090205.png ; $g _ { \chi } ^ { * } ( T )$ ; confidence 0.973

78. c12008050.png ; $\lambda \in C$ ; confidence 0.973

79. w12006069.png ; $T _ { B } \circ T _ { A } = T _ { A } \circ T _ { B }$ ; confidence 0.973

80. w13004050.png ; $\eta ( W ) d g ( W ) \in i R$ ; confidence 0.973

81. n13006037.png ; $\mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.973

82. a13013074.png ; $T$ ; confidence 0.973

83. e13006023.png ; $z \in Z$ ; confidence 0.973

84. j120020240.png ; $B M O$ ; confidence 0.973

85. g13006048.png ; $| x _ { i } | > 0$ ; confidence 0.973

86. q07632050.png ; $A ^ { \prime }$ ; confidence 0.973

87. z130110111.png ; $m p ( z )$ ; confidence 0.973

88. a13032029.png ; $\operatorname { log } ( q / p )$ ; confidence 0.973

89. d12026023.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { n k }$ ; confidence 0.973

90. k055840283.png ; $[ N x , x ] \geq 0$ ; confidence 0.973

91. r13008054.png ; $| w | \leq \rho _ { D }$ ; confidence 0.973

92. c02105068.png ; $N + 1$ ; confidence 0.973

93. e12018018.png ; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.973

94. a12023026.png ; $f | _ { \Gamma }$ ; confidence 0.973

95. b1202203.png ; $( x , v ) \in R ^ { N } \times R ^ { N }$ ; confidence 0.973

96. m12012027.png ; $A q \subseteq R$ ; confidence 0.973

97. b12031016.png ; $\operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.973

98. p13014041.png ; $f \pm ( x _ { 0 } )$ ; confidence 0.973

99. s13041043.png ; $( P _ { n } )$ ; confidence 0.973

100. a11079035.png ; $M _ { 1 }$ ; confidence 0.973

101. f12019017.png ; $N \cap H = \{ 1 \}$ ; confidence 0.973

102. a13023063.png ; $U = C ( S )$ ; confidence 0.973

103. d1203204.png ; $T : X \rightarrow L ^ { 1 }$ ; confidence 0.973

104. d12029043.png ; $q \leq N$ ; confidence 0.973

105. m130230144.png ; $\phi : X _ { n } \rightarrow Y$ ; confidence 0.973

106. h047860125.png ; $S ( X )$ ; confidence 0.973

107. e1201904.png ; $\sigma : X \times X \rightarrow F$ ; confidence 0.973

108. l12003089.png ; $T _ { E , \tau } R ^ { * }$ ; confidence 0.973

109. i13006014.png ; $\delta ( - k ) = - \delta ( k ) , k \in R , \quad \delta ( \infty ) = 0$ ; confidence 0.973

110. s120320111.png ; $\operatorname { Ber } ( T ) = \operatorname { det } ( P - Q S ^ { - 1 } R ) \operatorname { det } ( S ) ^ { - 1 }$ ; confidence 0.973

111. p130100180.png ; $f ^ { - 1 } ( K ) \cap T$ ; confidence 0.973

112. a01121087.png ; $q ( z )$ ; confidence 0.973

113. b12031018.png ; $\| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0$ ; confidence 0.973

114. b130010118.png ; $SU ( n , 1 )$ ; confidence 0.973

115. s130620119.png ; $( 1 / \pi ) \operatorname { Im } m + ( \lambda )$ ; confidence 0.973

116. t12015026.png ; $S = J \Delta ^ { 1 / 2 }$ ; confidence 0.973

117. d12003080.png ; $* 1$ ; confidence 0.973

118. e120010120.png ; $M = ( m _ { i } : A \rightarrow A _ { i } ) _ { I }$ ; confidence 0.973

119. l12010045.png ; $L _ { 1 / 2,1 } = 1 / 2$ ; confidence 0.972

120. i12001020.png ; $\operatorname { sup } _ { x \neq y \in \Omega } | u ( x ) - u ( y ) | ( \sigma | x - y | ) ^ { - 1 } < \infty$ ; confidence 0.972

121. b01521045.png ; $a b$ ; confidence 0.972

122. r13014016.png ; $N ( \lambda )$ ; confidence 0.972

123. a1300807.png ; $g ( x ) = h ( x ) / \alpha$ ; confidence 0.972

124. b13006023.png ; $\| A \| _ { 1 }$ ; confidence 0.972

125. n12010034.png ; $\nu > 0$ ; confidence 0.972

126. v1100509.png ; $f _ { Q }$ ; confidence 0.972

127. f13010070.png ; $g \in C ^ { G }$ ; confidence 0.972

128. l110020129.png ; $M ^ { \perp \perp \perp } = M ^ { \perp }$ ; confidence 0.972

129. b12018018.png ; $x \leq y \Leftrightarrow \exists z : x = y + z ^ { 2 }$ ; confidence 0.972

130. c13011021.png ; $\{ t _ { i } \}$ ; confidence 0.972

131. o13008046.png ; $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$ ; confidence 0.972

132. e12023028.png ; $\sigma ^ { 1 } : M \rightarrow E ^ { 1 }$ ; confidence 0.972

133. n12010041.png ; $F _ { \nu }$ ; confidence 0.972

134. s12023056.png ; $K ( n \times m )$ ; confidence 0.972

135. q13003031.png ; $( U \otimes I \otimes \ldots ) \psi$ ; confidence 0.972

136. r13010052.png ; $( i , y )$ ; confidence 0.972

137. b13025025.png ; $\alpha = \angle B A C$ ; confidence 0.972

138. m1201906.png ; $\int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) | F ( \tau ) | ^ { 2 } d \tau$ ; confidence 0.972

139. d03009010.png ; $P _ { \nu } = F _ { \nu } - m _ { \nu } w _ { \nu }$ ; confidence 0.972

140. a12008066.png ; $v _ { 1 } = d u / d t$ ; confidence 0.972

141. h12012076.png ; $t d$ ; confidence 0.972

142. c02468023.png ; $X ^ { ( 1 ) }$ ; confidence 0.972

143. s120230131.png ; $X \sim \operatorname { RS } _ { p , n } ( \phi )$ ; confidence 0.972

144. w12014016.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , R ) = 0$ ; confidence 0.972

145. s130510130.png ; $w \in F ( v )$ ; confidence 0.972

146. w1200309.png ; $K = \{ f : \int | f | ^ { 2 } \leq 1 \}$ ; confidence 0.972

147. a01317032.png ; $L ( x )$ ; confidence 0.972

148. s120230116.png ; $\tau _ { 1 } \geq \ldots \geq \tau _ { p } \geq 0$ ; confidence 0.972

149. b13026046.png ; $U \subset R ^ { n } \times [ 0,1 ]$ ; confidence 0.972

150. l12008020.png ; $( x , y , t ) \mapsto ( z , w ) = ( x + i y , t + i | z | ^ { 2 } )$ ; confidence 0.972

151. d1201506.png ; $d e ^ { - 1 }$ ; confidence 0.972

152. i12006086.png ; $P _ { G } = ( V \cup E , < )$ ; confidence 0.972

153. i13006024.png ; $l : = - \frac { d ^ { 2 } } { d x ^ { 2 } } + q ( x )$ ; confidence 0.972

154. d0303305.png ; $E ^ { p } ( M )$ ; confidence 0.972

155. c12020014.png ; $W ^ { m + 1 }$ ; confidence 0.972

156. f12019028.png ; $C _ { G } ( n ) \leq N$ ; confidence 0.972

157. f120230136.png ; $J : T M \rightarrow T M$ ; confidence 0.972

158. j13004075.png ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972

159. w13009068.png ; $\{ e _ { k } : k \geq 1 \}$ ; confidence 0.972

160. h046300105.png ; $n \leq 3$ ; confidence 0.972

161. a012460138.png ; $t , x$ ; confidence 0.972

162. d03024027.png ; $f ( 2 k ) ( 0 ) = 0$ ; confidence 0.972

163. b12006014.png ; $\frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } \cdot \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } \cdot \frac { \partial } { \partial \vartheta } ( \operatorname { sin } \vartheta \cdot \frac { \partial Y } { \partial \vartheta } ) +$ ; confidence 0.972

164. k055840386.png ; $D _ { \alpha , \beta } \subset C$ ; confidence 0.972

165. c120180385.png ; $r = 0 \in ( - 1 , + 1 )$ ; confidence 0.972

166. k12012035.png ; $x \in ( 0 , \infty )$ ; confidence 0.972

167. b015400101.png ; $\Psi _ { 2 }$ ; confidence 0.972

168. c13015061.png ; $G ( \Omega )$ ; confidence 0.972

169. h12004031.png ; $W \cap U _ { \xi } = * \emptyset$ ; confidence 0.972

170. c12017094.png ; $\operatorname { col } M ( n + 1 )$ ; confidence 0.972

171. a01184056.png ; $G$ ; confidence 0.972

172. d12028066.png ; $\phi \in A ( \tilde { D } )$ ; confidence 0.972

173. n12010026.png ; $b _ { i } \geq 0$ ; confidence 0.972

174. w1300804.png ; $X = \epsilon x$ ; confidence 0.972

175. n13002024.png ; $Z = R$ ; confidence 0.972

176. a13012059.png ; $A G _ { d } - 1 ( d , q )$ ; confidence 0.972

177. l12003036.png ; $K ( H ^ { * } \operatorname { Map } ( Z , Y ) , H ^ { * } X ) \rightarrow$ ; confidence 0.972

178. l06003055.png ; $\frac { s ^ { \prime } } { s } = e ^ { - x / k }$ ; confidence 0.972

179. b11052038.png ; $L _ { 2 } ( \Omega )$ ; confidence 0.972

180. b120430161.png ; $q \rightarrow 1$ ; confidence 0.972

181. f13028032.png ; $h ^ { \Pi } \in [ 0,1 ]$ ; confidence 0.972

182. r130070125.png ; $\{ h ( t , x ) \} \forall x \in E$ ; confidence 0.972

183. c120180306.png ; $( R ( \nabla ) \otimes 1 ) g \in \otimes ^ { 4 } E$ ; confidence 0.972

184. a01164066.png ; $i > 0$ ; confidence 0.972

185. g1200509.png ; $\psi ( x , y , t ) = \psi _ { 0 } ( y )$ ; confidence 0.972

186. w1201406.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , N ) = 0$ ; confidence 0.972

187. d13002015.png ; $\alpha ( T E ) \leq k \alpha ( E )$ ; confidence 0.972

188. t13014047.png ; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow Z$ ; confidence 0.972

189. f120230141.png ; $[ P , P ]$ ; confidence 0.972

190. c02211028.png ; $k > m$ ; confidence 0.972

191. c12002039.png ; $A ^ { \alpha } f$ ; confidence 0.972

192. b12056014.png ; $\frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }$ ; confidence 0.972

193. s12034030.png ; $H ^ { * } ( M ; Z )$ ; confidence 0.972

194. f12010062.png ; $26$ ; confidence 0.972

195. w12021020.png ; $W = \left( \begin{array} { c c c c } { A } & { B } & { C } & { D } \\ { - B } & { A } & { - D } & { C } \\ { - C } & { D } & { A } & { - B } \\ { - D } & { - C } & { B } & { A } \end{array} \right)$ ; confidence 0.972

196. w12017034.png ; $G / \omega ( G )$ ; confidence 0.971

197. b110220249.png ; $i , j \in Z$ ; confidence 0.971

198. o130060172.png ; $i \frac { \partial f } { \partial t _ { 2 } } + A _ { 2 } f = \Phi ^ { * } \sigma _ { 2 } u$ ; confidence 0.971

199. a12011020.png ; $A ( 3 , n ) = 2 ^ { n + 3 } - 3$ ; confidence 0.971

200. d13013039.png ; $\Psi _ { + }$ ; confidence 0.971

201. a130240439.png ; $( N ) \leq 1$ ; confidence 0.971

202. a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971

203. u13002010.png ; $\| \hat { f } \| _ { 2 } = 1$ ; confidence 0.971

204. i130090206.png ; $G _ { \chi } ^ { * } ( T )$ ; confidence 0.971

205. m12015066.png ; $0 < U < I _ { p } , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 )$ ; confidence 0.971

206. p12014041.png ; $E = S \cup T$ ; confidence 0.971

207. m12013012.png ; $\frac { d N } { d t } = \lambda N ( 1 - \frac { N } { K } )$ ; confidence 0.971

208. t12007084.png ; $V \times V \rightarrow R$ ; confidence 0.971

209. c1201701.png ; $\gamma \equiv \gamma ^ { ( 2 n ) }$ ; confidence 0.971

210. s13045039.png ; $x _ { 1 } > x _ { 2 }$ ; confidence 0.971

211. s13058026.png ; $I = ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.971

212. b11021014.png ; $S \neq 0$ ; confidence 0.971

213. p0754803.png ; $( p \& q ) \supset p$ ; confidence 0.971

214. k12013019.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.971

215. d11022038.png ; $\sum _ { 1 } ^ { m } r _ { j } = n$ ; confidence 0.971

216. m13025025.png ; $u v = F ^ { - 1 } ( F u ^ { * } F v )$ ; confidence 0.971

217. p07548015.png ; $A \& B \Leftrightarrow \neg ( A \supset \neg B ) , \quad A \vee B \Leftrightarrow \neg A \supset B$ ; confidence 0.971

218. c120180457.png ; $R ^ { + } = ( 0 , \infty )$ ; confidence 0.971

219. b12031044.png ; $f \in L ^ { 1 } \cap L ^ { 2 } ( R ^ { 2 k + 1 } )$ ; confidence 0.971

220. d1203004.png ; $d Y ( t ) = h ( t , X ( t ) , Y ( t ) ) d t + g ( t , Y ( t ) ) d \tilde { B } ( t )$ ; confidence 0.971

221. b12009034.png ; $\operatorname { Re } p _ { 2 } ( \xi , \tau ) > 0$ ; confidence 0.971

222. r13012011.png ; $[ x _ { 1 } , y _ { 1 } ] + [ x _ { 2 } , y _ { 2 } ] = [ x _ { 1 } + x _ { 2 } , y _ { 1 } + y _ { 2 } ]$ ; confidence 0.971

223. a130130100.png ; $A K N S$ ; confidence 0.971

224. m12023042.png ; $( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$ ; confidence 0.971

225. l13006099.png ; $k \times r$ ; confidence 0.971

226. a130040533.png ; $C : P ( A ) \rightarrow P ( A )$ ; confidence 0.971

227. b12016066.png ; $x _ { 2 } ^ { \prime } = x _ { 3 } ^ { \prime } = \frac { 1 } { 2 } [ ( x _ { 1 } + x _ { 2 } ) s - x _ { 1 } v ]$ ; confidence 0.971

228. a120160153.png ; $f ( y i t )$ ; confidence 0.971

229. i13006026.png ; $L ^ { 2 } ( R _ { + } )$ ; confidence 0.971

230. m130260241.png ; $M ( B )$ ; confidence 0.971

231. h046010148.png ; $n < 6$ ; confidence 0.971

232. a12008043.png ; $V \times L ^ { 2 } ( \Omega )$ ; confidence 0.971

233. b110220209.png ; $i = m = 1$ ; confidence 0.971

234. u13002037.png ; $a b > 1$ ; confidence 0.971

235. i13007036.png ; $| x | > a$ ; confidence 0.971

236. r13005052.png ; $( x y ) ^ { p } = x ^ { p } y ^ { p } z$ ; confidence 0.971

237. a130040345.png ; $\tilde { \Omega } _ { D } F =$ ; confidence 0.971

238. b12040062.png ; $B \subset G$ ; confidence 0.971

239. s12026013.png ; $\Gamma ( L ^ { 2 } ( R ^ { n } ) )$ ; confidence 0.971

240. n067520246.png ; $\sum _ { i = 1 } ^ { m } d _ { i } = n$ ; confidence 0.971

241. b13002019.png ; $x , y \in J$ ; confidence 0.971

242. n12003033.png ; $f : L A \times B \rightarrow C$ ; confidence 0.971

243. e12007060.png ; $F ^ { ( k + 1 ) } = f$ ; confidence 0.971

244. l12005015.png ; $L _ { 2 } ( R _ { + } ; \operatorname { cosh } ( \pi \tau ) )$ ; confidence 0.971

245. s12022020.png ; $\partial M \neq \emptyset$ ; confidence 0.971

246. e12018015.png ; $( M )$ ; confidence 0.971

247. o13006076.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma$ ; confidence 0.971

248. q12008067.png ; $I$ ; confidence 0.971

249. k12008030.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$ ; confidence 0.971

250. n13003036.png ; $\rho ( x , y ) w ( x , y )$ ; confidence 0.971

251. d0300908.png ; $F _ { \nu } = m _ { \nu } w _ { \nu } + P _ { \nu }$ ; confidence 0.971

252. f120110167.png ; $g + h$ ; confidence 0.971

253. c12018033.png ; $M \rightarrow R$ ; confidence 0.971

254. e13007089.png ; $1 \leq h \leq H$ ; confidence 0.971

255. q13004044.png ; $\varphi : G ^ { \prime } \rightarrow R ^ { 2 }$ ; confidence 0.970

256. e13007080.png ; $\zeta ( 1 / 2 + i t ) \ll t ^ { p } \operatorname { log } t$ ; confidence 0.970

257. b120130107.png ; $\| f / \varphi \| _ { p } \leq \| f \| _ { p }$ ; confidence 0.970

258. b12004095.png ; $L _ { \infty }$ ; confidence 0.970

259. m12021011.png ; $K \mapsto h _ { K }$ ; confidence 0.970

260. m1201602.png ; $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ ; confidence 0.970

261. c02190072.png ; $2 N$ ; confidence 0.970

262. l12004069.png ; $w _ { 1 } = ( 1 + \operatorname { sign } ( c ) ) / 2$ ; confidence 0.970

263. d03033021.png ; $H _ { c } ^ { * } ( M , R )$ ; confidence 0.970

264. s130540127.png ; $K _ { 2 } R$ ; confidence 0.970

265. b0164209.png ; $1 - p$ ; confidence 0.970

266. a13030032.png ; $\overline { \theta ( A ) } = B$ ; confidence 0.970

267. k055840193.png ; $\leq 2 \kappa + 1$ ; confidence 0.970

268. s12004065.png ; $| \lambda | = n$ ; confidence 0.970

269. b12009088.png ; $f ( z ) \in B ( \alpha / m )$ ; confidence 0.970

270. c130070233.png ; $T \cap k ( C _ { 2 } ) = T _ { 2 }$ ; confidence 0.970

271. e120070114.png ; $g \in C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.970

272. g130040175.png ; $B \subset \Omega \times G ( n , m )$ ; confidence 0.970

273. m1202404.png ; $\psi \rightarrow \psi [ 1 ]$ ; confidence 0.970

274. f12004023.png ; $\varphi : X \times W \rightarrow \overline { R }$ ; confidence 0.970

275. d11008039.png ; $w ^ { H }$ ; confidence 0.970

276. f13007033.png ; $F ^ { k } ( 2 , m ) =$ ; confidence 0.970

277. a11016052.png ; $\beta _ { k }$ ; confidence 0.970

278. e12011048.png ; $\nabla \times H = \frac { 1 } { c } J , \nabla B = 0$ ; confidence 0.970

279. o1200103.png ; $\operatorname { det } F = f ( \theta )$ ; confidence 0.970

280. i1300109.png ; $\chi = \chi _ { \lambda }$ ; confidence 0.970

281. c12021099.png ; $L ( T _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \Gamma h , \Gamma )$ ; confidence 0.970

282. e12026050.png ; $( t , \nu )$ ; confidence 0.970

283. l12008027.png ; $( x , y ) \mapsto ( x ^ { 2 } / 2 + i y )$ ; confidence 0.970

284. e120120114.png ; $Q ( \theta | \theta ^ { * } )$ ; confidence 0.970

285. b12009082.png ; $L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$ ; confidence 0.970

286. b13020088.png ; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970

287. a11042060.png ; $K _ { 1 }$ ; confidence 0.970

288. s12018056.png ; $M = M ^ { \perp \perp }$ ; confidence 0.970

289. p13007064.png ; $L _ { E } ^ { * } ( z ) = \operatorname { limsup } _ { w \rightarrow z } L _ { E } ( w )$ ; confidence 0.970

290. o13005069.png ; $\Theta _ { \Delta } ( z )$ ; confidence 0.970

291. s08602048.png ; $\Phi ^ { - } ( t _ { 0 } )$ ; confidence 0.970

292. b1200106.png ; $\{ x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \}$ ; confidence 0.970

293. b12055053.png ; $b _ { p } ( x ) = \operatorname { sup } _ { \gamma } b _ { \gamma } ( x )$ ; confidence 0.970

294. l06003043.png ; $\alpha = \pi / 2$ ; confidence 0.970

295. e12023027.png ; $\sigma ^ { 1 }$ ; confidence 0.970

296. s0860209.png ; $| \phi ( t _ { 1 } ) - \phi ( t _ { 2 } ) | \leq C | t _ { 1 } - t _ { 2 } | ^ { \alpha } , \quad 0 < \alpha \leq 1$ ; confidence 0.970

297. b12034067.png ; $z _ { 0 } = 0$ ; confidence 0.970

298. f12010074.png ; $L ( s )$ ; confidence 0.970

299. b12044044.png ; $k G$ ; confidence 0.970

300. b13025059.png ; $\overline { O K } = \frac { \overline { O \Omega } } { \operatorname { cos } \omega }$ ; confidence 0.970

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/23. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/23&oldid=44433