Difference between revisions of "User:Maximilian Janisch/latexlist/latex/16"
(AUTOMATIC EDIT of page 16 out of 16 with 46 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.) |
(AUTOMATIC EDIT of page 16 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020169.png ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001015.png ; $S ^ { * } = S$ ; confidence 0.463 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082450/r0824503.png ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771010.png ; $Z _ { \zeta } ( T )$ ; confidence 0.463 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110590/b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850182.png ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051970/i051970120.png ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040249.png ; $H _ { k } + 1 , \ldots , H _ { k } + m$ ; confidence 0.462 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030020.png ; $r$ ; confidence 0.461 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032070/d03207031.png ; $2 \pi \alpha$ ; confidence 0.461 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057780/l057780185.png ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490155.png ; $| \epsilon | < \epsilon$ ; confidence 0.461 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040285.png ; $\$ 4$ ; confidence 0.460 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050170.png ; $K ( n )$ ; confidence 0.460 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a0102008.png ; $\square _ { R } \Omega$ ; confidence 0.460 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101037.png ; $p _ { i }$ ; confidence 0.459 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/y/y110/y110010/y11001031.png ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040346.png ; $= \{ \langle \alpha , b \rangle \in A ^ { 2 } : \epsilon ^ { A } ( \alpha , b ) \in \text { Ffor all } \epsilon ( x , y ) \in E ( x , y ) \}$ ; confidence 0.459 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021081.png ; $\omega ; 0$ ; confidence 0.458 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660284.png ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074530/p07453019.png ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024034.png ; $w ^ { 2 } = a 0 z + a 1$ ; confidence 0.455 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052450/i0524504.png ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $T _ { F }$ ; confidence 0.455 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002060.png ; $( q ^ { d + 1 } ( 1 + \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } ) , q ^ { d } \cdot \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , q ^ { d } \cdot \frac { q ^ { d } - 1 } { q ^ { - 1 } } )$ ; confidence 0.455 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/a/a010/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012047.png ; $W _ { 1 }$ ; confidence 0.455 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071011.png ; $( A )$ ; confidence 0.454 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004025.png ; $L$ ; confidence 0.453 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021026.png ; $A _ { 1 } , B _ { 1 } , \dots , A , B _ { g }$ ; confidence 0.453 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040553.png ; $G$ ; confidence 0.453 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010204.png ; $I - ( \tilde { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.452 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517077.png ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010197.png ; $1 \leq \| T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 } \delta A \| \leq$ ; confidence 0.451 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060151.png ; $P _ { F } ^ { \# } ( n )$ ; confidence 0.450 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012064.png ; $n = 0,1 , \dots$ ; confidence 0.450 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420133.png ; $i$ ; confidence 0.450 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012940/a01294080.png ; $F _ { b }$ ; confidence 0.450 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521029.png ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450 |
+ | |||
+ | 47. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017025.png ; $f$ ; confidence 0.450 | ||
+ | |||
+ | 48. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025130/c0251306.png ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449 | ||
+ | |||
+ | 49. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449 | ||
+ | |||
+ | 50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200807.png ; $j ( x ) = \alpha _ { j , i } ( x )$ ; confidence 0.448 | ||
+ | |||
+ | 51. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060042.png ; $Y _ { z }$ ; confidence 0.447 | ||
+ | |||
+ | 52. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012054.png ; $\frac { \operatorname { lim } } { k \rightarrow \infty } \frac { n _ { k } } { | \lambda _ { k } | } = 0$ ; confidence 0.447 | ||
+ | |||
+ | 53. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447 | ||
+ | |||
+ | 54. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047540/h04754045.png ; $\Omega \frac { p } { x }$ ; confidence 0.447 | ||
+ | |||
+ | 55. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090820/s0908209.png ; $X ^ { * }$ ; confidence 0.447 | ||
+ | |||
+ | 56. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447 | ||
+ | |||
+ | 57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004017.png ; $\phi _ { L }$ ; confidence 0.446 | ||
+ | |||
+ | 58. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040246.png ; $C ^ { M }$ ; confidence 0.446 | ||
+ | |||
+ | 59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446 | ||
+ | |||
+ | 60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037054.png ; $P \{ X _ { k } ^ { + } = 0 \} = 1$ ; confidence 0.446 | ||
+ | |||
+ | 61. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001062.png ; $i$ ; confidence 0.446 | ||
+ | |||
+ | 62. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037022.png ; $t \rightarrow S$ ; confidence 0.445 | ||
+ | |||
+ | 63. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445 | ||
+ | |||
+ | 64. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445 | ||
+ | |||
+ | 65. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040210/f04021064.png ; $\phi ( \mathfrak { A } )$ ; confidence 0.445 | ||
+ | |||
+ | 66. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086490/s086490118.png ; $d ^ { \prime }$ ; confidence 0.445 | ||
+ | |||
+ | 67. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027000/c02700011.png ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444 | ||
+ | |||
+ | 68. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040214.png ; $K _ { A }$ ; confidence 0.444 | ||
+ | |||
+ | 69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443 | ||
+ | |||
+ | 70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443 | ||
+ | |||
+ | 71. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443 | ||
+ | |||
+ | 72. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443 | ||
+ | |||
+ | 73. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780129.png ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443 | ||
+ | |||
+ | 74. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518080.png ; $f _ { x } ^ { - 1 }$ ; confidence 0.443 | ||
+ | |||
+ | 75. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631095.png ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443 | ||
+ | |||
+ | 76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040351.png ; $x \leftrightarrow T$ ; confidence 0.441 | ||
+ | |||
+ | 77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $Y$ ; confidence 0.441 | ||
+ | |||
+ | 78. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052055.png ; $( a ( h ) ) ^ { h - q }$ ; confidence 0.441 | ||
+ | |||
+ | 79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040746.png ; $P \cup R$ ; confidence 0.441 | ||
+ | |||
+ | 80. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004095.png ; $d > 1$ ; confidence 0.441 | ||
+ | |||
+ | 81. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001037.png ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440 | ||
+ | |||
+ | 82. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256041.png ; $300$ ; confidence 0.440 | ||
+ | |||
+ | 83. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085580/s085580244.png ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440 | ||
+ | |||
+ | 84. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440 | ||
+ | |||
+ | 85. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a1101509.png ; $\alpha , b , \ldots$ ; confidence 0.439 | ||
+ | |||
+ | 86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030032.png ; $e ^ { x } \alpha + 1$ ; confidence 0.439 | ||
+ | |||
+ | 87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040671.png ; $\{ X , v \}$ ; confidence 0.439 | ||
+ | |||
+ | 88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022081.png ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439 | ||
+ | |||
+ | 89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300205.png ; $X \subset R ^ { n }$ ; confidence 0.439 | ||
+ | |||
+ | 90. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021057.png ; $( \frac { a - x } { z ^ { x } } + \ldots + \frac { a - 2 } { z ^ { 2 } } + f ( z ) ) d z$ ; confidence 0.439 | ||
+ | |||
+ | 91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022051.png ; $U W ^ { T } = 0$ ; confidence 0.439 | ||
+ | |||
+ | 92. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210107.png ; $k , b + k$ ; confidence 0.439 | ||
+ | |||
+ | 93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040344.png ; $F \in Fi _ { D } A$ ; confidence 0.438 | ||
+ | |||
+ | 94. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015069.png ; $\mathfrak { a } / W$ ; confidence 0.438 | ||
+ | |||
+ | 95. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010016.png ; $u \in C ^ { G }$ ; confidence 0.438 | ||
+ | |||
+ | 96. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png ; $A = N \oplus S _ { 1 }$ ; confidence 0.438 | ||
+ | |||
+ | 97. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055026.png ; $S ^ { x - 1 } = O ( n ) / O ( n - 1 )$ ; confidence 0.438 | ||
+ | |||
+ | 98. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058010.png ; $\chi _ { k + 1 } ( \int _ { x _ { 0 } } ^ { x _ { n } } \Omega ( x , t ) y ^ { ( k + 2 ) } ( t ) d t ) h ^ { k + 1 } + O ( h ^ { k + 2 } )$ ; confidence 0.437 | ||
+ | |||
+ | 99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680195.png ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437 | ||
+ | |||
+ | 100. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162068.png ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437 | ||
+ | |||
+ | 101. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042030/f04203082.png ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437 | ||
+ | |||
+ | 102. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001094.png ; $\overline { X } \rightarrow X$ ; confidence 0.437 | ||
+ | |||
+ | 103. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024030.png ; $n \times p$ ; confidence 0.435 | ||
+ | |||
+ | 104. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008067.png ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435 | ||
+ | |||
+ | 105. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h1100503.png ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435 | ||
+ | |||
+ | 106. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a0102208.png ; $w _ { \nu } = ( \omega _ { 1 } \nu , \ldots , \omega _ { p } \nu ) , \quad \nu = 1 , \ldots , 2 p$ ; confidence 0.435 | ||
+ | |||
+ | 107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060143.png ; $\pi$ ; confidence 0.434 | ||
+ | |||
+ | 108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013098.png ; $\pi$ ; confidence 0.434 | ||
+ | |||
+ | 109. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009013.png ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434 | ||
+ | |||
+ | 110. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018040.png ; $s = s 1$ ; confidence 0.434 | ||
+ | |||
+ | 111. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101204.png ; $\{ A _ { N } \}$ ; confidence 0.433 | ||
+ | |||
+ | 112. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029080.png ; $\pi x : X _ { \delta } \rightarrow X$ ; confidence 0.433 | ||
+ | |||
+ | 113. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017620/b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433 | ||
+ | |||
+ | 114. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003027.png ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433 | ||
+ | |||
+ | 115. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850130.png ; $X \subset M ^ { n }$ ; confidence 0.432 | ||
+ | |||
+ | 116. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073840/p0738407.png ; $A \supset B$ ; confidence 0.432 | ||
+ | |||
+ | 117. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077370/r07737019.png ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432 | ||
+ | |||
+ | 118. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220106.png ; $i$ ; confidence 0.432 | ||
+ | |||
+ | 119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006036.png ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } } \end{array} \right.$ ; confidence 0.432 | ||
+ | |||
+ | 120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040788.png ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431 | ||
+ | |||
+ | 121. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431 | ||
+ | |||
+ | 122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040453.png ; $\{ A , F \rangle \in K$ ; confidence 0.431 | ||
+ | |||
+ | 123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202206.png ; $\varepsilon \in X$ ; confidence 0.430 | ||
+ | |||
+ | 124. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035800/e0358008.png ; $\nu ( n ) = \alpha$ ; confidence 0.430 | ||
+ | |||
+ | 125. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082560/r08256016.png ; $1$ ; confidence 0.430 | ||
+ | |||
+ | 126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430 | ||
+ | |||
+ | 127. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005065.png ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429 | ||
+ | |||
+ | 128. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033530/d03353095.png ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429 | ||
+ | |||
+ | 129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071026.png ; $( A _ { i } )$ ; confidence 0.428 | ||
+ | |||
+ | 130. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050113.png ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428 | ||
+ | |||
+ | 131. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004090.png ; $d > 5$ ; confidence 0.427 | ||
+ | |||
+ | 132. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427 | ||
+ | |||
+ | 133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102405.png ; $\alpha ; ( z )$ ; confidence 0.427 | ||
+ | |||
+ | 134. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097450/w09745010.png ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426 | ||
+ | |||
+ | 135. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016026.png ; $x _ { k + 1 } = D ^ { - 1 } ( b - ( L + U ) x _ { k } )$ ; confidence 0.426 | ||
+ | |||
+ | 136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040233.png ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426 | ||
+ | |||
+ | 137. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037019.png ; $s \in R _ { + }$ ; confidence 0.425 | ||
+ | |||
+ | 138. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010840/a01084029.png ; $l \mapsto ( . l )$ ; confidence 0.425 | ||
+ | |||
+ | 139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023068.png ; $c _ { q }$ ; confidence 0.425 | ||
+ | |||
+ | 140. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091200/s09120056.png ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425 | ||
+ | |||
+ | 141. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233050.png ; $x <$ ; confidence 0.424 | ||
+ | |||
+ | 142. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850206.png ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424 | ||
+ | |||
+ | 143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424 | ||
+ | |||
+ | 144. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024077.png ; $\int _ { P _ { 1 } } ^ { P _ { 2 } } \omega _ { P _ { 3 } P _ { 4 } } = \int _ { P _ { 3 } } ^ { P _ { 4 } } \omega _ { P _ { 1 } P _ { 2 } }$ ; confidence 0.423 | ||
+ | |||
+ | 145. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010015.png ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422 | ||
+ | |||
+ | 146. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070240/o07024014.png ; $6 \pi \eta \alpha$ ; confidence 0.422 | ||
+ | |||
+ | 147. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a1101607.png ; $a _ { i }$ ; confidence 0.422 | ||
+ | |||
+ | 148. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102205.png ; $X _ { t }$ ; confidence 0.422 | ||
+ | |||
+ | 149. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040240.png ; $\varphi _ { L } : A \hookrightarrow P ^ { S }$ ; confidence 0.422 | ||
+ | |||
+ | 150. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421 | ||
+ | |||
+ | 151. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260171.png ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421 | ||
+ | |||
+ | 152. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058030.png ; $k = 1 , v _ { 1 } = 1 / 2 , v 0 = 1 / 2$ ; confidence 0.421 | ||
+ | |||
+ | 153. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010267.png ; $\hat { \lambda } = \lambda + \epsilon ^ { 1 / m } \lambda _ { 1 } + \epsilon ^ { 2 / m } \lambda _ { 2 } +$ ; confidence 0.420 | ||
+ | |||
+ | 154. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420 | ||
+ | |||
+ | 155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020064.png ; $T : \mathfrak { A } \rightarrow \mathfrak { A } / \mathfrak { A } _ { 1 }$ ; confidence 0.420 | ||
+ | |||
+ | 156. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006018.png ; $N ( n )$ ; confidence 0.419 | ||
+ | |||
+ | 157. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018018.png ; $Z 1,22$ ; confidence 0.419 | ||
+ | |||
+ | 158. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016740/b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419 | ||
+ | |||
+ | 159. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075700/p075700100.png ; $q ^ { 1 }$ ; confidence 0.419 | ||
+ | |||
+ | 160. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018063.png ; $S _ { 1 } , \ldots , S _ { k }$ ; confidence 0.418 | ||
+ | |||
+ | 161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010224.png ; $E _ { i } = x ^ { i } y ^ { i }$ ; confidence 0.418 | ||
+ | |||
+ | 162. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418 | ||
+ | |||
+ | 163. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290181.png ; $LOC$ ; confidence 0.417 | ||
+ | |||
+ | 164. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040636.png ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417 | ||
+ | |||
+ | 165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006086.png ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417 | ||
+ | |||
+ | 166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040434.png ; $F _ { 0 }$ ; confidence 0.417 | ||
+ | |||
+ | 167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416 | ||
+ | |||
+ | 168. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432806.png ; $\mathfrak { x } \times x$ ; confidence 0.416 | ||
+ | |||
+ | 169. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067280/n06728058.png ; $\pi / \rho$ ; confidence 0.416 | ||
+ | |||
+ | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004054.png ; $F \subset A$ ; confidence 0.416 | ||
+ | |||
+ | 171. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040242.png ; $Q \in H ^ { 0 } ( P ^ { 8 } , I _ { A / P ^ { 8 } } ( 2 ) )$ ; confidence 0.415 | ||
+ | |||
+ | 172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415 | ||
+ | |||
+ | 173. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052027.png ; $x \in G _ { n }$ ; confidence 0.415 | ||
+ | |||
+ | 174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240152.png ; $X \beta$ ; confidence 0.414 | ||
+ | |||
+ | 175. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006029.png ; $B _ { j } \in B$ ; confidence 0.414 | ||
+ | |||
+ | 176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518044.png ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414 | ||
+ | |||
+ | 177. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120247.png ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414 | ||
+ | |||
+ | 178. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040527.png ; $\{ A , C \}$ ; confidence 0.413 | ||
+ | |||
+ | 179. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022890/c02289075.png ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413 | ||
+ | |||
+ | 180. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110210/m11021064.png ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413 | ||
+ | |||
+ | 181. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005095.png ; $v \in G$ ; confidence 0.413 | ||
+ | |||
+ | 182. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005030.png ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413 | ||
+ | |||
+ | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413 | ||
+ | |||
+ | 184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006040.png ; $40$ ; confidence 0.413 | ||
+ | |||
+ | 185. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016028.png ; $x _ { k + 1 } = ( D + L ) ^ { - 1 } ( b - U _ { x _ { k } } )$ ; confidence 0.412 | ||
+ | |||
+ | 186. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a1100708.png ; $\langle \sum _ { k = 1 } ^ { n } \| T x _ { k } \| ^ { p } ) ^ { 1 / p } \leq$ ; confidence 0.412 | ||
+ | |||
+ | 187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029078.png ; $( X _ { \delta } , \pi X )$ ; confidence 0.412 | ||
+ | |||
+ | 188. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043024.png ; $q i$ ; confidence 0.412 | ||
+ | |||
+ | 189. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412 | ||
+ | |||
+ | 190. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637024.png ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412 | ||
+ | |||
+ | 191. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021030.png ; $A _ { j } = \int _ { a _ { j } } \omega , \quad B _ { j } = \int _ { b _ { j } } \omega , \quad j = 1 , \ldots , g$ ; confidence 0.412 | ||
+ | |||
+ | 192. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017045.png ; $[ T ] n = - \rho U [ a ]$ ; confidence 0.412 | ||
+ | |||
+ | 193. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040218.png ; $I _ { A / P } ^ { 7 }$ ; confidence 0.411 | ||
+ | |||
+ | 194. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810261.png ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411 | ||
+ | |||
+ | 195. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070011.png ; $r = \{ \alpha \in A : ( \alpha , 0 ) \in r \}$ ; confidence 0.410 | ||
+ | |||
+ | 196. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038470/f03847049.png ; $\tau _ { k + 1 } = t$ ; confidence 0.410 | ||
+ | |||
+ | 197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040659.png ; $^ { * } L _ { D }$ ; confidence 0.409 | ||
+ | |||
+ | 198. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008026.png ; $C _ { \psi }$ ; confidence 0.409 | ||
+ | |||
+ | 199. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031064.png ; $\tau ^ { n }$ ; confidence 0.408 | ||
+ | |||
+ | 200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040120.png ; $( F _ { 1 } . F _ { 2 } ) = d$ ; confidence 0.408 | ||
+ | |||
+ | 201. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410141.png ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407 | ||
+ | |||
+ | 202. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040225.png ; $\hat { K } _ { A }$ ; confidence 0.407 | ||
+ | |||
+ | 203. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020640/c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406 | ||
+ | |||
+ | 204. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p072850150.png ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406 | ||
+ | |||
+ | 205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010213.png ; $\delta \lambda _ { i } \approx \frac { y ^ { i } ^ { * } \delta A x ^ { i } } { y ^ { i ^ { * } } x ^ { i } }$ ; confidence 0.406 | ||
+ | |||
+ | 206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106706.png ; $\overline { v }$ ; confidence 0.405 | ||
+ | |||
+ | 207. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g0434807.png ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405 | ||
+ | |||
+ | 208. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110140/l11014014.png ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405 | ||
+ | |||
+ | 209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040649.png ; $57$ ; confidence 0.404 | ||
+ | |||
+ | 210. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105803.png ; $y _ { n + 1 } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k } u _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } )$ ; confidence 0.404 | ||
+ | |||
+ | 211. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404 | ||
+ | |||
+ | 212. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103209.png ; $i = 2 , \ldots , s$ ; confidence 0.404 | ||
+ | |||
+ | 213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005069.png ; $0 , T$ ; confidence 0.403 | ||
+ | |||
+ | 214. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070012.png ; $r = K e r r ^ { - 1 }$ ; confidence 0.403 | ||
+ | |||
+ | 215. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403 | ||
+ | |||
+ | 216. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740324.png ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403 | ||
+ | |||
+ | 217. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025180/c02518096.png ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402 | ||
+ | |||
+ | 218. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002050.png ; $21$ ; confidence 0.401 | ||
+ | |||
+ | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401 | ||
+ | |||
+ | 220. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052260/i05226072.png ; $Z \in G$ ; confidence 0.401 | ||
+ | |||
+ | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040116.png ; $2$ ; confidence 0.401 | ||
+ | |||
+ | 222. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102403.png ; $Z , W$ ; confidence 0.401 | ||
+ | |||
+ | 223. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072830/p07283021.png ; $\epsilon _ { i j } ^ { k }$ ; confidence 0.400 | ||
+ | |||
+ | 224. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012084.png ; $c _ { t } ^ { \prime } \geq c _ { t }$ ; confidence 0.400 | ||
+ | |||
+ | 225. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018031.png ; $A _ { x } = \alpha _ { 1 } + \ldots + \alpha _ { x }$ ; confidence 0.399 | ||
+ | |||
+ | 226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033032.png ; $\hat { N }$ ; confidence 0.399 | ||
+ | |||
+ | 227. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060090/l060090100.png ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399 | ||
+ | |||
+ | 228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004099.png ; $\psi \in S$ ; confidence 0.398 | ||
+ | |||
+ | 229. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104209.png ; $\{ X _ { n } \}$ ; confidence 0.398 | ||
+ | |||
+ | 230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201304.png ; $E _ { \theta } [ H ( \theta , X ) ] = 0 , \quad \text { if } \theta = \theta ^ { * }$ ; confidence 0.398 | ||
+ | |||
+ | 231. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028035.png ; $( - 1 ) ^ { x } \chi ( G ; - k )$ ; confidence 0.398 | ||
+ | |||
+ | 232. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052150/i0521507.png ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397 | ||
+ | |||
+ | 233. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042079.png ; $25$ ; confidence 0.396 | ||
+ | |||
+ | 234. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022033.png ; $5$ ; confidence 0.396 | ||
+ | |||
+ | 235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050014.png ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396 | ||
+ | |||
+ | 236. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081560/r081560116.png ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396 | ||
+ | |||
+ | 237. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021070.png ; $P _ { 2 }$ ; confidence 0.396 | ||
+ | |||
+ | 238. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718064.png ; $H ( K )$ ; confidence 0.395 | ||
+ | |||
+ | 239. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020144.png ; $\operatorname { gr } D _ { X }$ ; confidence 0.395 | ||
+ | |||
+ | 240. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008028.png ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394 | ||
+ | |||
+ | 241. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110340/a1103408.png ; $\theta _ { i }$ ; confidence 0.393 | ||
+ | |||
+ | 242. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012057.png ; $k = 0,1 , \ldots ,$ ; confidence 0.393 | ||
+ | |||
+ | 243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040281.png ; $X \rightarrow y$ ; confidence 0.392 | ||
+ | |||
+ | 244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007019.png ; $| \frac { \partial U ( t , s ) } { \partial t } | | \leq \frac { C } { t - s } , \quad s , t \in [ 0 , T ]$ ; confidence 0.392 | ||
+ | |||
+ | 245. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093570/t0935701.png ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391 | ||
+ | |||
+ | 246. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010194.png ; $\hat { \lambda } I - A - \delta A = ( \hat { \lambda } I - A ) [ I - ( \hat { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.391 | ||
+ | |||
+ | 247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040181.png ; $\alpha \in G$ ; confidence 0.390 | ||
+ | |||
+ | 248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001086.png ; $\| \delta x \| = \| A ^ { - 1 } B ^ { - 1 } B N \| =$ ; confidence 0.390 | ||
+ | |||
+ | 249. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001061.png ; $| \delta b | \leq \epsilon | b |$ ; confidence 0.389 | ||
+ | |||
+ | 250. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780377.png ; $1 B S G$ ; confidence 0.389 | ||
+ | |||
+ | 251. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240508.png ; $E ( Z _ { 13 } ) = 0$ ; confidence 0.388 | ||
+ | |||
+ | 252. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388 | ||
+ | |||
+ | 253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200601.png ; $\left. \begin{array} { c } { \frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u = f ( x , t ) } \\ { ( x , t ) \in \Omega \times [ 0 , T ] } \\ { u ( x , 0 ) = u _ { 0 } ( x ) , \quad x \in \Omega } \end{array} \right.$ ; confidence 0.387 | ||
+ | |||
+ | 254. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006018.png ; $P _ { B }$ ; confidence 0.385 | ||
+ | |||
+ | 255. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a1106409.png ; $S U N$ ; confidence 0.385 | ||
+ | |||
+ | 256. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004015.png ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385 | ||
+ | |||
+ | 257. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010054.png ; $X ^ { * }$ ; confidence 0.384 | ||
+ | |||
+ | 258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024066.png ; $y _ { i j k } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j } + e _ { j k }$ ; confidence 0.384 | ||
+ | |||
+ | 259. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099015.png ; $P _ { \alpha }$ ; confidence 0.384 | ||
+ | |||
+ | 260. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041320/f04132023.png ; $v _ { 0 } ^ { k }$ ; confidence 0.384 | ||
+ | |||
+ | 261. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105807.png ; $y _ { n + 1 } ^ { ( i + 1 ) } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k - 1 } v _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } ) + h v _ { 1 } f ( x _ { n + 1 } , y _ { n + 1 } ^ { ( i ) } )$ ; confidence 0.383 | ||
+ | |||
+ | 262. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032036.png ; $n _ { S }$ ; confidence 0.383 | ||
+ | |||
+ | 263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202805.png ; $X *$ ; confidence 0.383 | ||
+ | |||
+ | 264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382 | ||
+ | |||
+ | 265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013023.png ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382 | ||
+ | |||
+ | 266. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050970/i05097047.png ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382 | ||
+ | |||
+ | 267. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010222.png ; $E$ ; confidence 0.382 | ||
+ | |||
+ | 268. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010196.png ; $( \hat { \lambda } I - A ) ^ { - 1 } = T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 }$ ; confidence 0.382 | ||
+ | |||
+ | 269. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046064.png ; $x , h \in X$ ; confidence 0.382 | ||
+ | |||
+ | 270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040405.png ; $P _ { U } K$ ; confidence 0.381 | ||
+ | |||
+ | 271. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025920/c02592019.png ; $631$ ; confidence 0.381 | ||
+ | |||
+ | 272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012029.png ; $| \lambda _ { X } | \leq ( n + 1 ) ^ { \alpha - 1 }$ ; confidence 0.381 | ||
+ | |||
+ | 273. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015010.png ; $F ( . | S _ { i } )$ ; confidence 0.381 | ||
+ | |||
+ | 274. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033016.png ; $\beta _ { y }$ ; confidence 0.380 | ||
+ | |||
+ | 275. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021055.png ; $a - 1$ ; confidence 0.380 | ||
+ | |||
+ | 276. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png ; $Q$ ; confidence 0.380 | ||
+ | |||
+ | 277. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087780/s08778021.png ; $w ^ { \prime }$ ; confidence 0.380 | ||
+ | |||
+ | 278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040213.png ; $^ { * } S \text { s } 5$ ; confidence 0.380 | ||
+ | |||
+ | 279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020088.png ; $\phi \gamma$ ; confidence 0.380 | ||
+ | |||
+ | 280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070106.png ; $d | n$ ; confidence 0.379 | ||
+ | |||
+ | 281. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010035.png ; $X = R$ ; confidence 0.378 | ||
+ | |||
+ | 282. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010108.png ; $Sp ( 0 )$ ; confidence 0.378 | ||
+ | |||
+ | 283. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635060.png ; $\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$ ; confidence 0.378 | ||
+ | |||
+ | 284. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035011.png ; $n$ ; confidence 0.377 | ||
+ | |||
+ | 285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240236.png ; $n - r$ ; confidence 0.377 | ||
+ | |||
+ | 286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015019.png ; $( g )$ ; confidence 0.376 | ||
+ | |||
+ | 287. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010246.png ; $( A - \hat { \lambda } I ) x ^ { ( i + 1 ) } = x ^ { ( i ) } , \quad i = 1 , \ldots , n$ ; confidence 0.376 | ||
+ | |||
+ | 288. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120321.png ; $4 x$ ; confidence 0.375 | ||
+ | |||
+ | 289. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035028.png ; $\lambda ( x ) \phi _ { \lambda } ( y )$ ; confidence 0.374 | ||
+ | |||
+ | 290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374 | ||
+ | |||
+ | 291. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471603.png ; $H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$ ; confidence 0.374 | ||
+ | |||
+ | 292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055850/k055850103.png ; $D _ { \alpha }$ ; confidence 0.374 | ||
+ | |||
+ | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006032.png ; $\pi _ { K } ( x ) = \sum _ { n \leq x } P _ { K } ( n ) \sim \frac { x } { \operatorname { log } x } \operatorname { asx } \rightarrow \infty$ ; confidence 0.374 | ||
+ | |||
+ | 294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240377.png ; $T ^ { 2 }$ ; confidence 0.373 | ||
+ | |||
+ | 295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071047.png ; $n _ { j \neq i } Q _ { j } \subset Q _ { i }$ ; confidence 0.373 | ||
+ | |||
+ | 296. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703046.png ; $\mathfrak { M } _ { n }$ ; confidence 0.373 | ||
+ | |||
+ | 297. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372 | ||
+ | |||
+ | 298. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006014.png ; $n = ( n 1 , \ldots , n _ { m } )$ ; confidence 0.372 | ||
+ | |||
+ | 299. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010139.png ; $i = 1 , \dots , r$ ; confidence 0.372 | ||
+ | |||
+ | 300. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053020/i05302096.png ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371 |
Revision as of 08:36, 6 September 2019
List
1. ; $H \mapsto C _ { A } ^ { \prime }$ ; confidence 0.465
2. ; $S ^ { * } = S$ ; confidence 0.463
3. ; $( a + b ) \alpha = \alpha \alpha + b \alpha$ ; confidence 0.463
4. ; $Z _ { \zeta } ( T )$ ; confidence 0.463
5. ; $P$ ; confidence 0.462
6. ; $u = q ( x ) \text { on } g$ ; confidence 0.462
7. ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.462
8. ; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
9. ; $H _ { k } + 1 , \ldots , H _ { k } + m$ ; confidence 0.462
10. ; $r$ ; confidence 0.461
11. ; $2 \pi \alpha$ ; confidence 0.461
12. ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
13. ; $| \epsilon | < \epsilon$ ; confidence 0.461
14. ; $\$ 4$ ; confidence 0.460
15. ; $K ( n )$ ; confidence 0.460
16. ; $\square _ { R } \Omega$ ; confidence 0.460
17. ; $p _ { i }$ ; confidence 0.459
18. ; $H _ { 1 } \subset L _ { N }$ ; confidence 0.459
19. ; $= \{ \langle \alpha , b \rangle \in A ^ { 2 } : \epsilon ^ { A } ( \alpha , b ) \in \text { Ffor all } \epsilon ( x , y ) \in E ( x , y ) \}$ ; confidence 0.459
20. ; $\omega ; 0$ ; confidence 0.458
21. ; $t = ( t _ { x } )$ ; confidence 0.458
22. ; $1$ ; confidence 0.458
23. ; $A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$ ; confidence 0.458
24. ; $A ( \iota X A ( x ) )$ ; confidence 0.456
25. ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.456
26. ; $w ^ { 2 } = a 0 z + a 1$ ; confidence 0.455
27. ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455
28. ; $M$ ; confidence 0.455
29. ; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
30. ; $T _ { F }$ ; confidence 0.455
31. ; $( q ^ { d + 1 } ( 1 + \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } ) , q ^ { d } \cdot \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , q ^ { d } \cdot \frac { q ^ { d } - 1 } { q ^ { - 1 } } )$ ; confidence 0.455
32. ; $W _ { 1 }$ ; confidence 0.455
33. ; $( A )$ ; confidence 0.454
34. ; $L$ ; confidence 0.453
35. ; $A _ { 1 } , B _ { 1 } , \dots , A , B _ { g }$ ; confidence 0.453
36. ; $G$ ; confidence 0.453
37. ; $I - ( \tilde { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.452
38. ; $\overline { U _ { n } \in N A _ { n } ( B ) }$ ; confidence 0.452
39. ; $^ { * } S _ { IP }$ ; confidence 0.452
40. ; $1 \leq \| T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 } \delta A \| \leq$ ; confidence 0.451
41. ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
42. ; $P _ { F } ^ { \# } ( n )$ ; confidence 0.450
43. ; $n = 0,1 , \dots$ ; confidence 0.450
44. ; $i$ ; confidence 0.450
45. ; $F _ { b }$ ; confidence 0.450
46. ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.450
47. ; $f$ ; confidence 0.450
48. ; $f _ { i } : D ^ { n } \rightarrow M _ { i }$ ; confidence 0.449
49. ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449
50. ; $j ( x ) = \alpha _ { j , i } ( x )$ ; confidence 0.448
51. ; $Y _ { z }$ ; confidence 0.447
52. ; $\frac { \operatorname { lim } } { k \rightarrow \infty } \frac { n _ { k } } { | \lambda _ { k } | } = 0$ ; confidence 0.447
53. ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
54. ; $\Omega \frac { p } { x }$ ; confidence 0.447
55. ; $X ^ { * }$ ; confidence 0.447
56. ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
57. ; $\phi _ { L }$ ; confidence 0.446
58. ; $C ^ { M }$ ; confidence 0.446
59. ; $T _ { 1 }$ ; confidence 0.446
60. ; $P \{ X _ { k } ^ { + } = 0 \} = 1$ ; confidence 0.446
61. ; $i$ ; confidence 0.446
62. ; $t \rightarrow S$ ; confidence 0.445
63. ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
64. ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
65. ; $\phi ( \mathfrak { A } )$ ; confidence 0.445
66. ; $d ^ { \prime }$ ; confidence 0.445
67. ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.444
68. ; $K _ { A }$ ; confidence 0.444
69. ; $d ^ { * } S _ { D }$ ; confidence 0.443
70. ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443
71. ; $\alpha _ { i } \in R$ ; confidence 0.443
72. ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443
73. ; $\Omega _ { f r } ^ { i }$ ; confidence 0.443
74. ; $f _ { x } ^ { - 1 }$ ; confidence 0.443
75. ; $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ ; confidence 0.443
76. ; $x \leftrightarrow T$ ; confidence 0.441
77. ; $Y$ ; confidence 0.441
78. ; $( a ( h ) ) ^ { h - q }$ ; confidence 0.441
79. ; $P \cup R$ ; confidence 0.441
80. ; $d > 1$ ; confidence 0.441
81. ; $\| \delta b \| \leq \epsilon \| b \|$ ; confidence 0.440
82. ; $300$ ; confidence 0.440
83. ; $M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$ ; confidence 0.440
84. ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
85. ; $\alpha , b , \ldots$ ; confidence 0.439
86. ; $e ^ { x } \alpha + 1$ ; confidence 0.439
87. ; $\{ X , v \}$ ; confidence 0.439
88. ; $\alpha _ { j k } = \alpha _ { k l }$ ; confidence 0.439
89. ; $X \subset R ^ { n }$ ; confidence 0.439
90. ; $( \frac { a - x } { z ^ { x } } + \ldots + \frac { a - 2 } { z ^ { 2 } } + f ( z ) ) d z$ ; confidence 0.439
91. ; $U W ^ { T } = 0$ ; confidence 0.439
92. ; $k , b + k$ ; confidence 0.439
93. ; $F \in Fi _ { D } A$ ; confidence 0.438
94. ; $\mathfrak { a } / W$ ; confidence 0.438
95. ; $u \in C ^ { G }$ ; confidence 0.438
96. ; $A = N \oplus S _ { 1 }$ ; confidence 0.438
97. ; $S ^ { x - 1 } = O ( n ) / O ( n - 1 )$ ; confidence 0.438
98. ; $\chi _ { k + 1 } ( \int _ { x _ { 0 } } ^ { x _ { n } } \Omega ( x , t ) y ^ { ( k + 2 ) } ( t ) d t ) h ^ { k + 1 } + O ( h ^ { k + 2 } )$ ; confidence 0.437
99. ; $b _ { i } = \alpha _ { i } \alpha _ { 1 }$ ; confidence 0.437
100. ; $\pi _ { \mathscr { q } } ( F )$ ; confidence 0.437
101. ; $T _ { \rightarrow } V ^ { - 1 } T V$ ; confidence 0.437
102. ; $\overline { X } \rightarrow X$ ; confidence 0.437
103. ; $n \times p$ ; confidence 0.435
104. ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.435
105. ; $\alpha _ { 1 } \ldots \alpha _ { m }$ ; confidence 0.435
106. ; $w _ { \nu } = ( \omega _ { 1 } \nu , \ldots , \omega _ { p } \nu ) , \quad \nu = 1 , \ldots , 2 p$ ; confidence 0.435
107. ; $\pi$ ; confidence 0.434
108. ; $\pi$ ; confidence 0.434
109. ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
110. ; $s = s 1$ ; confidence 0.434
111. ; $\{ A _ { N } \}$ ; confidence 0.433
112. ; $\pi x : X _ { \delta } \rightarrow X$ ; confidence 0.433
113. ; $P _ { C } ^ { 1 }$ ; confidence 0.433
114. ; $X ( Y . f ) = ( Y X ) . f$ ; confidence 0.433
115. ; $X \subset M ^ { n }$ ; confidence 0.432
116. ; $A \supset B$ ; confidence 0.432
117. ; $P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$ ; confidence 0.432
118. ; $i$ ; confidence 0.432
119. ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ] } \\ { u ( 0 ) = u _ { 0 } } \end{array} \right.$ ; confidence 0.432
120. ; $g g ^ { \prime } : B \rightarrow C$ ; confidence 0.431
121. ; $L ^ { Y } ( X , Y )$ ; confidence 0.431
122. ; $\{ A , F \rangle \in K$ ; confidence 0.431
123. ; $\varepsilon \in X$ ; confidence 0.430
124. ; $\nu ( n ) = \alpha$ ; confidence 0.430
125. ; $1$ ; confidence 0.430
126. ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430
127. ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
128. ; $\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$ ; confidence 0.429
129. ; $( A _ { i } )$ ; confidence 0.428
130. ; $U ( . . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
131. ; $d > 5$ ; confidence 0.427
132. ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
133. ; $\alpha ; ( z )$ ; confidence 0.427
134. ; $= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$ ; confidence 0.426
135. ; $x _ { k + 1 } = D ^ { - 1 } ( b - ( L + U ) x _ { k } )$ ; confidence 0.426
136. ; $E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.426
137. ; $s \in R _ { + }$ ; confidence 0.425
138. ; $l \mapsto ( . l )$ ; confidence 0.425
139. ; $c _ { q }$ ; confidence 0.425
140. ; $\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$ ; confidence 0.425
141. ; $x <$ ; confidence 0.424
142. ; $f ^ { \prime } ( x _ { 1 } ) \equiv 0$ ; confidence 0.424
143. ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424
144. ; $\int _ { P _ { 1 } } ^ { P _ { 2 } } \omega _ { P _ { 3 } P _ { 4 } } = \int _ { P _ { 3 } } ^ { P _ { 4 } } \omega _ { P _ { 1 } P _ { 2 } }$ ; confidence 0.423
145. ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.422
146. ; $6 \pi \eta \alpha$ ; confidence 0.422
147. ; $a _ { i }$ ; confidence 0.422
148. ; $X _ { t }$ ; confidence 0.422
149. ; $\varphi _ { L } : A \hookrightarrow P ^ { S }$ ; confidence 0.422
150. ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421
151. ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
152. ; $k = 1 , v _ { 1 } = 1 / 2 , v 0 = 1 / 2$ ; confidence 0.421
153. ; $\hat { \lambda } = \lambda + \epsilon ^ { 1 / m } \lambda _ { 1 } + \epsilon ^ { 2 / m } \lambda _ { 2 } +$ ; confidence 0.420
154. ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
155. ; $T : \mathfrak { A } \rightarrow \mathfrak { A } / \mathfrak { A } _ { 1 }$ ; confidence 0.420
156. ; $N ( n )$ ; confidence 0.419
157. ; $Z 1,22$ ; confidence 0.419
158. ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
159. ; $q ^ { 1 }$ ; confidence 0.419
160. ; $S _ { 1 } , \ldots , S _ { k }$ ; confidence 0.418
161. ; $E _ { i } = x ^ { i } y ^ { i }$ ; confidence 0.418
162. ; $( C ( S ) , \overline { g } )$ ; confidence 0.418
163. ; $LOC$ ; confidence 0.417
164. ; $\operatorname { Th } _ { S } _ { P } \mathfrak { M }$ ; confidence 0.417
165. ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417
166. ; $F _ { 0 }$ ; confidence 0.417
167. ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416
168. ; $\mathfrak { x } \times x$ ; confidence 0.416
169. ; $\pi / \rho$ ; confidence 0.416
170. ; $F \subset A$ ; confidence 0.416
171. ; $Q \in H ^ { 0 } ( P ^ { 8 } , I _ { A / P ^ { 8 } } ( 2 ) )$ ; confidence 0.415
172. ; $\operatorname { ad } X$ ; confidence 0.415
173. ; $x \in G _ { n }$ ; confidence 0.415
174. ; $X \beta$ ; confidence 0.414
175. ; $B _ { j } \in B$ ; confidence 0.414
176. ; $X _ { X } \in T _ { X } ( M )$ ; confidence 0.414
177. ; $A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$ ; confidence 0.414
178. ; $\{ A , C \}$ ; confidence 0.413
179. ; $l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$ ; confidence 0.413
180. ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.413
181. ; $v \in G$ ; confidence 0.413
182. ; $D = \langle x ^ { 2 } \} \subset R [ x ]$ ; confidence 0.413
183. ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413
184. ; $40$ ; confidence 0.413
185. ; $x _ { k + 1 } = ( D + L ) ^ { - 1 } ( b - U _ { x _ { k } } )$ ; confidence 0.412
186. ; $\langle \sum _ { k = 1 } ^ { n } \| T x _ { k } \| ^ { p } ) ^ { 1 / p } \leq$ ; confidence 0.412
187. ; $( X _ { \delta } , \pi X )$ ; confidence 0.412
188. ; $q i$ ; confidence 0.412
189. ; $v \in A _ { p } ( G )$ ; confidence 0.412
190. ; $M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$ ; confidence 0.412
191. ; $A _ { j } = \int _ { a _ { j } } \omega , \quad B _ { j } = \int _ { b _ { j } } \omega , \quad j = 1 , \ldots , g$ ; confidence 0.412
192. ; $[ T ] n = - \rho U [ a ]$ ; confidence 0.412
193. ; $I _ { A / P } ^ { 7 }$ ; confidence 0.411
194. ; $\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$ ; confidence 0.411
195. ; $r = \{ \alpha \in A : ( \alpha , 0 ) \in r \}$ ; confidence 0.410
196. ; $\tau _ { k + 1 } = t$ ; confidence 0.410
197. ; $^ { * } L _ { D }$ ; confidence 0.409
198. ; $C _ { \psi }$ ; confidence 0.409
199. ; $\tau ^ { n }$ ; confidence 0.408
200. ; $( F _ { 1 } . F _ { 2 } ) = d$ ; confidence 0.408
201. ; $R ^ { n } \subset C ^ { k }$ ; confidence 0.407
202. ; $\hat { K } _ { A }$ ; confidence 0.407
203. ; $\mu = \beta \nu$ ; confidence 0.406
204. ; $\Omega _ { X } ( k ) \equiv \Omega ( k )$ ; confidence 0.406
205. ; $\delta \lambda _ { i } \approx \frac { y ^ { i } ^ { * } \delta A x ^ { i } } { y ^ { i ^ { * } } x ^ { i } }$ ; confidence 0.406
206. ; $\overline { v }$ ; confidence 0.405
207. ; $\alpha _ { 31 } / \alpha _ { 11 }$ ; confidence 0.405
208. ; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
209. ; $57$ ; confidence 0.404
210. ; $y _ { n + 1 } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k } u _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } )$ ; confidence 0.404
211. ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404
212. ; $i = 2 , \ldots , s$ ; confidence 0.404
213. ; $0 , T$ ; confidence 0.403
214. ; $r = K e r r ^ { - 1 }$ ; confidence 0.403
215. ; $P$ ; confidence 0.403
216. ; $( \alpha _ { e } ) _ { é \in E }$ ; confidence 0.403
217. ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.402
218. ; $21$ ; confidence 0.401
219. ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401
220. ; $Z \in G$ ; confidence 0.401
221. ; $2$ ; confidence 0.401
222. ; $Z , W$ ; confidence 0.401
223. ; $\epsilon _ { i j } ^ { k }$ ; confidence 0.400
224. ; $c _ { t } ^ { \prime } \geq c _ { t }$ ; confidence 0.400
225. ; $A _ { x } = \alpha _ { 1 } + \ldots + \alpha _ { x }$ ; confidence 0.399
226. ; $\hat { N }$ ; confidence 0.399
227. ; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
228. ; $\psi \in S$ ; confidence 0.398
229. ; $\{ X _ { n } \}$ ; confidence 0.398
230. ; $E _ { \theta } [ H ( \theta , X ) ] = 0 , \quad \text { if } \theta = \theta ^ { * }$ ; confidence 0.398
231. ; $( - 1 ) ^ { x } \chi ( G ; - k )$ ; confidence 0.398
232. ; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397
233. ; $25$ ; confidence 0.396
234. ; $5$ ; confidence 0.396
235. ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396
236. ; $R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$ ; confidence 0.396
237. ; $P _ { 2 }$ ; confidence 0.396
238. ; $H ( K )$ ; confidence 0.395
239. ; $\operatorname { gr } D _ { X }$ ; confidence 0.395
240. ; $P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$ ; confidence 0.394
241. ; $\theta _ { i }$ ; confidence 0.393
242. ; $k = 0,1 , \ldots ,$ ; confidence 0.393
243. ; $X \rightarrow y$ ; confidence 0.392
244. ; $| \frac { \partial U ( t , s ) } { \partial t } | | \leq \frac { C } { t - s } , \quad s , t \in [ 0 , T ]$ ; confidence 0.392
245. ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.391
246. ; $\hat { \lambda } I - A - \delta A = ( \hat { \lambda } I - A ) [ I - ( \hat { \lambda } I - A ) ^ { - 1 } \delta A$ ; confidence 0.391
247. ; $\alpha \in G$ ; confidence 0.390
248. ; $\| \delta x \| = \| A ^ { - 1 } B ^ { - 1 } B N \| =$ ; confidence 0.390
249. ; $| \delta b | \leq \epsilon | b |$ ; confidence 0.389
250. ; $1 B S G$ ; confidence 0.389
251. ; $E ( Z _ { 13 } ) = 0$ ; confidence 0.388
252. ; $r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$ ; confidence 0.388
253. ; $\left. \begin{array} { c } { \frac { \partial u } { \partial t } + \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u = f ( x , t ) } \\ { ( x , t ) \in \Omega \times [ 0 , T ] } \\ { u ( x , 0 ) = u _ { 0 } ( x ) , \quad x \in \Omega } \end{array} \right.$ ; confidence 0.387
254. ; $P _ { B }$ ; confidence 0.385
255. ; $S U N$ ; confidence 0.385
256. ; $( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$ ; confidence 0.385
257. ; $X ^ { * }$ ; confidence 0.384
258. ; $y _ { i j k } = \mu + \alpha _ { i } + \beta _ { j } + \gamma _ { i j } + e _ { j k }$ ; confidence 0.384
259. ; $P _ { \alpha }$ ; confidence 0.384
260. ; $v _ { 0 } ^ { k }$ ; confidence 0.384
261. ; $y _ { n + 1 } ^ { ( i + 1 ) } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k - 1 } v _ { - \lambda } f ( x _ { n - \lambda } , y _ { n - \lambda } ) + h v _ { 1 } f ( x _ { n + 1 } , y _ { n + 1 } ^ { ( i ) } )$ ; confidence 0.383
262. ; $n _ { S }$ ; confidence 0.383
263. ; $X *$ ; confidence 0.383
264. ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382
265. ; $= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$ ; confidence 0.382
266. ; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382
267. ; $E$ ; confidence 0.382
268. ; $( \hat { \lambda } I - A ) ^ { - 1 } = T ( \hat { \lambda } I - \Lambda ) ^ { - 1 } T ^ { - 1 }$ ; confidence 0.382
269. ; $x , h \in X$ ; confidence 0.382
270. ; $P _ { U } K$ ; confidence 0.381
271. ; $631$ ; confidence 0.381
272. ; $| \lambda _ { X } | \leq ( n + 1 ) ^ { \alpha - 1 }$ ; confidence 0.381
273. ; $F ( . | S _ { i } )$ ; confidence 0.381
274. ; $\beta _ { y }$ ; confidence 0.380
275. ; $a - 1$ ; confidence 0.380
276. ; $Q$ ; confidence 0.380
277. ; $w ^ { \prime }$ ; confidence 0.380
278. ; $^ { * } S \text { s } 5$ ; confidence 0.380
279. ; $\phi \gamma$ ; confidence 0.380
280. ; $d | n$ ; confidence 0.379
281. ; $X = R$ ; confidence 0.378
282. ; $Sp ( 0 )$ ; confidence 0.378
283. ; $\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$ ; confidence 0.378
284. ; $n$ ; confidence 0.377
285. ; $n - r$ ; confidence 0.377
286. ; $( g )$ ; confidence 0.376
287. ; $( A - \hat { \lambda } I ) x ^ { ( i + 1 ) } = x ^ { ( i ) } , \quad i = 1 , \ldots , n$ ; confidence 0.376
288. ; $4 x$ ; confidence 0.375
289. ; $\lambda ( x ) \phi _ { \lambda } ( y )$ ; confidence 0.374
290. ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374
291. ; $H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$ ; confidence 0.374
292. ; $D _ { \alpha }$ ; confidence 0.374
293. ; $\pi _ { K } ( x ) = \sum _ { n \leq x } P _ { K } ( n ) \sim \frac { x } { \operatorname { log } x } \operatorname { asx } \rightarrow \infty$ ; confidence 0.374
294. ; $T ^ { 2 }$ ; confidence 0.373
295. ; $n _ { j \neq i } Q _ { j } \subset Q _ { i }$ ; confidence 0.373
296. ; $\mathfrak { M } _ { n }$ ; confidence 0.373
297. ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.372
298. ; $n = ( n 1 , \ldots , n _ { m } )$ ; confidence 0.372
299. ; $i = 1 , \dots , r$ ; confidence 0.372
300. ; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
Maximilian Janisch/latexlist/latex/16. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/16&oldid=43906