Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/15"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 15 out of 16 with 300 lines: Updated image/latex database (currently 4546 images latexified; order by Confidence, ascending: False.)
 
(AUTOMATIC EDIT of page 15 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040189.png ; $2 t ^ { * } s ^ { * } s$ ; confidence 0.257
+
1. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072930/p072930169.png ; $t _ { \gamma }$ ; confidence 0.533
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020058.png ; $\operatorname { Ker } \beta \in \mathfrak { A } _ { 1 }$ ; confidence 0.257
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050228.png ; $G$ ; confidence 0.533
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040400.png ; $Mod ^ { * } S _ { D } = P _ { SD } Mod ^ { * } L _ { D }$ ; confidence 0.256
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a0101208.png ; $P _ { N } ( z )$ ; confidence 0.533
  
4. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018015.png ; $\tau \in V o c$ ; confidence 0.532
  
5. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256
+
5. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011020.png ; $t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$ ; confidence 0.532
  
6. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
+
6. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065510/m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532
  
7. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060160.png ; $S _ { F }$ ; confidence 0.532
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021042.png ; $i , j = 1 , \dots , g$ ; confidence 0.255
+
8. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201205.png ; $A = ( a _ { i } j )$ ; confidence 0.531
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n } - 1 , \varphi _ { n }$ ; confidence 0.255
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450371.png ; $\{ fd ( M )$ ; confidence 0.531
  
11. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s110/s110040/s110040107.png ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040241.png ; $\Gamma \dagger _ { D } \varphi \text { iff } K ( \Gamma ) \approx L ( \Gamma ) \vDash _ { K } K ( \varphi ) \approx L ( \varphi )$ ; confidence 0.254
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220110.png ; $R _ { 2 }$ ; confidence 0.531
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010281.png ; $( A _ { x } \lambda ^ { x } + A _ { x - 1 } \lambda ^ { x - 1 } + \ldots + A _ { 0 } ) x = 0$ ; confidence 0.253
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007021.png ; $3.4 , \ldots , 89$ ; confidence 0.530
  
14. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012010.png ; $\lambda _ { x } = a + n h$ ; confidence 0.530
  
15. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006034.png ; $\{ X _ { i } : u \in I \}$ ; confidence 0.529
  
16. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010468.png ; $P s$ ; confidence 0.529
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a110220114.png ; $H , m$ ; confidence 0.529
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001064.png ; $\rho ( | A ^ { - 1 } \delta A | ) < 1$ ; confidence 0.528
  
19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022088.png ; $R ( f ) ( . ) = g ( L ( h _ { 1 } ) ( . ) , \ldots , L ( h _ { j } ) ( . ) )$ ; confidence 0.527
  
20. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110910/b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006024.png ; $\{ A _ { 1 } , \dots , A _ { l } \}$ ; confidence 0.527
  
21. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073830/p07383050.png ; $E \subset X = R ^ { \prime }$ ; confidence 0.250
+
21. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025450/c02545035.png ; $T ^ { * }$ ; confidence 0.527
  
22. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076850/q07685043.png ; $E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$ ; confidence 0.250
+
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240329.png ; $x$ ; confidence 0.527
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040612.png ; $97$ ; confidence 0.250
+
23. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110010/c1100106.png ; $T : A _ { j } \rightarrow A$ ; confidence 0.526
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319041.png ; $t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$ ; confidence 0.248
+
24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009011.png ; $- i \partial / \partial x _ { j }$ ; confidence 0.526
  
25. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052052.png ; $a _ { n }$ ; confidence 0.526
  
26. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076500/q07650033.png ; $3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$ ; confidence 0.248
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007032.png ; $d > c$ ; confidence 0.525
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001043.png ; $\| \delta x \| f \| x \| \approx \epsilon . k ( A )$ ; confidence 0.247
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050196.png ; $Z _ { A ( p ) } ( y ) = \prod _ { r = 1 } ^ { \infty } ( 1 - y ^ { r } ) ^ { - 1 } = \sum _ { n = 0 } ^ { \infty } p ( n ) y ^ { n }$ ; confidence 0.525
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $s l _ { 2 }$ ; confidence 0.247
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021092.png ; $w _ { 3 }$ ; confidence 0.525
  
29. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055630/k0556303.png ; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
+
29. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027570/c02757085.png ; $z$ ; confidence 0.525
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040526.png ; $Co _ { Alg } FMod ^ { * } L _ { D } A$ ; confidence 0.246
+
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008049.png ; $( 5 \times 10 ^ { 6 } r ) ^ { 3 }$ ; confidence 0.525
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010217.png ; $1 / | y ^ { i } _ { x ^ { i } } ^ { * }$ ; confidence 0.245
+
31. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650148.png ; $\therefore M \rightarrow E$ ; confidence 0.524
  
32. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035170/e03517056.png ; $\| \hat { A } - A \| \leq \delta$ ; confidence 0.245
+
32. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015025.png ; $w \in T V$ ; confidence 0.524
  
33. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
+
33. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006022.png ; $\pi ( x ) \sim \frac { x } { \operatorname { log } x } \text { as } x \rightarrow \infty$ ; confidence 0.524
  
34. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
+
34. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030024.png ; $\theta _ { X }$ ; confidence 0.524
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q R$ ; confidence 0.245
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a1100109.png ; $\overline { X } - X$ ; confidence 0.524
  
36. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110990/b11099011.png ; $V _ { Q }$ ; confidence 0.244
+
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070121.png ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u v$ ; confidence 0.523
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010251.png ; $\| v \| = \| A x - \hat { \lambda } x \| _ { 2 } \leq \epsilon \| A \| _ { 2 } \| x \| _ { 2 }$ ; confidence 0.243
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a1102803.png ; $u$ ; confidence 0.523
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010207.png ; $\operatorname { min } _ { i } | \hat { \lambda } - \lambda _ { i } | \leq \rho ( | T ^ { - 1 } | | \delta A | | T | )$ ; confidence 0.242
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106704.png ; $\tilde { y } \in \tilde { Y } = Y$ ; confidence 0.523
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040227.png ; $\Gamma \approx \Delta \operatorname { mod } e l s _ { K } \varphi \approx \psi \text { iff } E ( \Gamma , \Delta ) \dagger _ { D } E ( \varphi , \psi )$ ; confidence 0.241
+
39. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830290.png ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523
  
40. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
+
40. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065500/m06550014.png ; $P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$ ; confidence 0.523
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004050.png ; $\mathfrak { A } = \langle A , F \rangle$ ; confidence 0.241
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300406.png ; $\lambda ^ { Fm } : Fm ^ { n } \rightarrow Fm$ ; confidence 0.522
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010110.png ; $A N = \operatorname { max } _ { 1 } \leq i _ { j } \leq n | \alpha _ { \xi } j |$ ; confidence 0.241
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021069.png ; $( - 1 / z ) d z$ ; confidence 0.522
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$ ; confidence 0.240
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017010/b01701014.png ; $\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$ ; confidence 0.522
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $( n$ ; confidence 0.239
+
44. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016036.png ; $R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$ ; confidence 0.522
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012055.png ; $\{ n _ { k } \}$ ; confidence 0.521
  
46. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097870/w09787060.png ; $\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$ ; confidence 0.238
+
46. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001080.png ; $| v |$ ; confidence 0.521
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013020.png ; $0.00$ ; confidence 0.237
+
47. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096350/v09635084.png ; $a \perp b$ ; confidence 0.521
  
48. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645091.png ; $X _ { 1 }$ ; confidence 0.237
+
48. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973508.png ; $A = N \oplus s$ ; confidence 0.521
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
+
49. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202409.png ; $t \mapsto t + T$ ; confidence 0.520
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240370.png ; $2$ ; confidence 0.235
+
50. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062490/m06249054.png ; $F _ { \infty } ^ { s }$ ; confidence 0.520
  
51. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047070/h0470704.png ; $\alpha _ { i k } = \overline { a _ { k i } }$ ; confidence 0.235
+
51. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022071.png ; $T$ ; confidence 0.520
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040163.png ; $\langle A , F \rangle$ ; confidence 0.234
+
52. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970164.png ; $E X _ { k } = a$ ; confidence 0.520
  
53. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405038.png ; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
+
53. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055036.png ; $Z _ { p }$ ; confidence 0.520
  
54. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083170/s08317062.png ; $\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$ ; confidence 0.234
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240418.png ; $n ^ { - 1 } M _ { E }$ ; confidence 0.519
  
55. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005042.png ; $\lambda \in S _ { \theta _ { 0 } }$ ; confidence 0.519
  
56. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091910/s091910121.png ; $T _ { i } = C A ^ { i } B ^ { i } B$ ; confidence 0.233
+
56. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035160/e03516059.png ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010229.png ; $\frac { \| x ^ { 2 } - x ^ { i } \| } { \| x ^ { i } \| } \leq \frac { \psi } { \operatorname { min } _ { j \neq i } | \lambda _ { i } - \lambda _ { j } | - 2 \psi }$ ; confidence 0.233
+
57. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044650/g04465025.png ; $a _ { y }$ ; confidence 0.519
  
58. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020190/c02019023.png ; $C A$ ; confidence 0.232
+
58. https://www.encyclopediaofmath.org/legacyimages/k/k056/k056010/k056010160.png ; $R ^ { k } p \times ( F )$ ; confidence 0.519
  
59. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380303.png ; $\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$ ; confidence 0.232
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033013.png ; $U _ { j } ^ { * } = \{ h _ { 1 } , \dots , h _ { j } \} \cap [ 0 , p ]$ ; confidence 0.519
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004024.png ; $\Delta \operatorname { log } \varphi$ ; confidence 0.232
+
60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420119.png ; $x \in H ^ { + }$ ; confidence 0.518
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015560/b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
+
61. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r082290200.png ; $p _ { \alpha } = e$ ; confidence 0.518
  
62. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780328.png ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.230
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010076.png ; $\operatorname { inf } _ { \epsilon > 0 ; \mu \in W } \operatorname { sup } \{ g ( x ) : g \in \operatorname { span } ( M ) , w g \leq w f + \epsilon \}$ ; confidence 0.518
  
63. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010032.png ; $( T _ { n } ) _ { n \in N }$ ; confidence 0.517
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004022.png ; $\Delta H _ { D } \psi$ ; confidence 0.230
+
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050149.png ; $= \prod _ { p \in P } ( 1 + | p | ^ { - z } + | p | ^ { - 2 z } + \ldots ) =$ ; confidence 0.517
  
65. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065160/m06516021.png ; $\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$ ; confidence 0.229
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015440/b0154406.png ; $E X _ { 2 j } = \mu _ { 2 }$ ; confidence 0.517
  
66. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093160/t09316053.png ; $\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$ ; confidence 0.229
+
66. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002042.png ; $( \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , \frac { q ^ { d } - 1 } { q ^ { - 1 } } , \frac { q ^ { d - 1 } - 1 } { q ^ { - 1 } } )$ ; confidence 0.517
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210112.png ; $( \omega ) = P _ { 1 } ^ { \alpha _ { 1 } } 1 ^ { \square } \ldots P _ { n } ^ { \alpha _ { R } }$ ; confidence 0.228
+
67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a0102407.png ; $j = 0 , \dots , n$ ; confidence 0.517
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240536.png ; $Z _ { 23 }$ ; confidence 0.228
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008041.png ; $v = d u f d t$ ; confidence 0.516
  
69. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037040/e03704050.png ; $n + = n - = n$ ; confidence 0.228
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012040/a01204016.png ; $\partial M ^ { n + 1 } = K ^ { n }$ ; confidence 0.516
  
70. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x120010101.png ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.228
+
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
  
71. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110410/c11041043.png ; $C X Y$ ; confidence 0.226
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020021.png ; $\phi = ( \phi _ { 1 } , \ldots , \phi _ { n } )$ ; confidence 0.516
  
72. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.226
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024044.png ; $u _ { 1 } = \int _ { L } \phi _ { 1 } , \ldots , u _ { g } = \int _ { L } \phi _ { g }$ ; confidence 0.516
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012015.png ; $P _ { X } ( z ) = \frac { 1 } { n ! } ( z - \alpha ) ( z - \alpha - n h ) ^ { \gamma - 1 }$ ; confidence 0.226
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $( 1 )$ ; confidence 0.515
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040415.png ; $\operatorname { Aod } ^ { * } L _ { D }$ ; confidence 0.225
+
74. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515
  
75. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c1102508.png ; $20$ ; confidence 0.225
+
75. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
  
76. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025700/c02570021.png ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.225
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015420/b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514
  
77. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026450/c02645033.png ; $\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$ ; confidence 0.223
+
77. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004012.png ; $( f \in H _ { C } ( D ) )$ ; confidence 0.513
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003012.png ; $x - a | < b - a$ ; confidence 0.223
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110380/a11038040.png ; $\sim 2$ ; confidence 0.512
  
79. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063710/m06371091.png ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.222
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130090/d13009046.png ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050159.png ; $c ^ { - 2 }$ ; confidence 0.222
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040586.png ; $Fm _ { F }$ ; confidence 0.512
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012038.png ; $\{ \lambda _ { n } \} \in \Lambda _ { \alpha }$ ; confidence 0.221
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010255.png ; $\delta A = - H . | A | \cdot \operatorname { diag } ( \operatorname { sgn } ( x _ { i } ) )$ ; confidence 0.511
  
82. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043470/g0434707.png ; $\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$ ; confidence 0.221
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010019.png ; $p _ { U } ( x ) \leq p _ { V K } ( x _ { 0 } ) + \epsilon$ ; confidence 0.511
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460130.png ; $X \equiv 0$ ; confidence 0.220
+
83. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074970/p074970165.png ; $DX _ { k } = \sigma ^ { 2 }$ ; confidence 0.511
  
84. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080740/r0807408.png ; $x _ { n m _ { n } } \rightarrow ( 0 )$ ; confidence 0.220
+
84. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082150/r082150142.png ; $\operatorname { exp } _ { q } X = r$ ; confidence 0.511
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012025.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } ( n ! ) ^ { - \alpha } a _ { n } z ^ { n } , \quad \underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } \leq r$ ; confidence 0.220
+
85. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021017.png ; $\omega = p d z , \quad \pi = q d z , \quad \alpha = \alpha ( z )$ ; confidence 0.510
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240383.png ; $H ^ { \prime }$ ; confidence 0.219
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110360/a1103601.png ; $s : H \rightarrow G$ ; confidence 0.510
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110270/b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219
+
87. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073030/p07303077.png ; $\mathfrak { g } = C$ ; confidence 0.510
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020082.png ; $3$ ; confidence 0.218
+
88. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t09260032.png ; $\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$ ; confidence 0.510
  
89. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031750/d03175051.png ; $Z _ { h }$ ; confidence 0.217
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006092.png ; $G _ { q , k }$ ; confidence 0.510
  
90. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087420/s087420178.png ; $\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$ ; confidence 0.216
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240420.png ; $\zeta _ { 1 } , \ldots , \zeta _ { q }$ ; confidence 0.510
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012032.png ; $S _ { a }$ ; confidence 0.216
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008016.png ; $c _ { X } \leq 0$ ; confidence 0.509
  
92. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430107.png ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
+
92. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023076.png ; $Z ^ { * }$ ; confidence 0.508
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040808.png ; $^ { * } L D S$ ; confidence 0.214
+
93. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l059110155.png ; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058028.png ; $k = 1 , u 0 = 3 / 2 , u _ { - 1 } = - 1 / 2$ ; confidence 0.508
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020063.png ; $21 / 21$ ; confidence 0.212
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018028.png ; $\sigma > c$ ; confidence 0.508
  
96. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044340/g044340202.png ; $\xi _ { p } \in ( \nu F ^ { m } ) p$ ; confidence 0.212
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040247.png ; $H _ { 1 } , \ldots , H _ { k } : C ^ { M } \rightarrow C$ ; confidence 0.507
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040661.png ; $= \{ M e _ { S _ { i } }$ ; confidence 0.212
+
97. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i05003048.png ; $I _ { X }$ ; confidence 0.507
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004085.png ; $\{ 21 , n \}$ ; confidence 0.211
+
98. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030142.png ; $\pi$ ; confidence 0.507
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007015.png ; $x _ { k } \in X$ ; confidence 0.211
+
99. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544031.png ; $\Phi _ { t } = id$ ; confidence 0.507
  
100. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031730/d03173088.png ; $| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$ ; confidence 0.210
+
100. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n06796016.png ; $q 2 = 6$ ; confidence 0.507
  
101. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082070/r08207022.png ; $R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$ ; confidence 0.210
+
101. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s08540076.png ; $x _ { i } \in \pi$ ; confidence 0.507
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506
  
103. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280129.png ; $f : X ^ { \cdot } \rightarrow Y$ ; confidence 0.209
+
103. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048000/h04800018.png ; $\Omega \in \Delta ^ { n } S$ ; confidence 0.506
  
104. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031470/d0314706.png ; $| \hat { b } _ { n } | = 1$ ; confidence 0.209
+
104. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916065.png ; $A ^ { ( 0 ) }$ ; confidence 0.506
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020048.png ; $B \in Ob \mathfrak { A } _ { 1 }$ ; confidence 0.209
+
105. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450221.png ; $a T \rightarrow \infty$ ; confidence 0.506
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240547.png ; $T ^ { 2 }$ ; confidence 0.505
  
107. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102106.png ; $I \subset I I \subset M$ ; confidence 0.505
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020049.png ; $A , C \in Ob A _ { 1 }$ ; confidence 0.207
+
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a01431097.png ; $| x$ ; confidence 0.207
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020025.png ; $D : \mathfrak { D } \rightarrow A$ ; confidence 0.505
  
110. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042060/f042060121.png ; $\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$ ; confidence 0.207
+
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
+
111. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040080/f04008051.png ; $P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$ ; confidence 0.505
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016650/b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
+
112. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090260/s09026014.png ; $d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$ ; confidence 0.505
  
113. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380296.png ; $\sum _ { \sim } D _ { n + 1 } ^ { 0 }$ ; confidence 0.204
+
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505
  
114. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094300/t09430077.png ; $\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$ ; confidence 0.204
+
114. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093340/t0933407.png ; $S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$ ; confidence 0.505
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010162.png ; $\hat { \kappa } ( A )$ ; confidence 0.201
+
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060159.png ; $S _ { Y }$ ; confidence 0.505
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022086.png ; $\alpha _ { j k }$ ; confidence 0.201
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012028.png ; $\beta j > 0$ ; confidence 0.505
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040641.png ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040128.png ; $\phi ^ { \prime }$ ; confidence 0.504
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png ; $k$ ; confidence 0.504
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200
+
119. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697056.png ; $\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.504
  
120. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740146.png ; $\alpha \rightarrow \dot { b }$ ; confidence 0.200
+
120. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180209.png ; $\varepsilon$ ; confidence 0.504
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a1106404.png ; $S U M \leftarrow + \backslash B \leftarrow 04 ^ { - 68 < 71 ^ { - } 29.9 }$ ; confidence 0.199
+
121. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n06796020.png ; $q 2 = 4$ ; confidence 0.504
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970198.png ; $\hat { W } \square _ { \infty } ^ { \gamma }$ ; confidence 0.199
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018042.png ; $\alpha \neq - 1 , - 2 , \dots ,$ ; confidence 0.504
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010273.png ; $( A \otimes I + I \otimes B ^ { T } ) \operatorname { vect } ( X ) = \operatorname { vect } ( C )$ ; confidence 0.199
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a1100808.png ; $( c _ { x } , c _ { y } ) = c ( - \frac { \xi } { \omega } , - \frac { \eta } { \omega } ) = c ( - \operatorname { cos } \theta , - \operatorname { sin } \theta )$ ; confidence 0.503
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004045.png ; $a$ ; confidence 0.199
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022023.png ; $C _ { \pi }$ ; confidence 0.503
  
125. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png ; $\sigma _ { k }$ ; confidence 0.198
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016065.png ; $\| x _ { k } - x ^ { * } \| _ { A } \leq \frac { 1 } { C _ { m } ( 1 + 2 \eta ) } \| x _ { 0 } - x ^ { * } \| _ { A }$ ; confidence 0.503
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $Mod ^ { * } S _ { D }$ ; confidence 0.198
+
126. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010233.png ; $\lambda$ ; confidence 0.503
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021090.png ; $A _ { k } ^ { \prime } = \int _ { a _ { k } } \omega _ { 3 } , \quad B _ { k } ^ { \prime } = \int _ { b _ { k } } \omega _ { 3 } , \quad k = 1 , \ldots , g$ ; confidence 0.197
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420122.png ; $y \in H$ ; confidence 0.503
  
128. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092470/t092470182.png ; $e _ { v } \leq \mathfrak { e } _ { v } + 1$ ; confidence 0.197
+
128. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590192.png ; $\alpha p$ ; confidence 0.503
  
129. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058027.png ; $k = 0 , u _ { 0 } = 1$ ; confidence 0.503
  
130. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c02315041.png ; $f : S ^ { m } \rightarrow S ^ { n }$ ; confidence 0.195
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060256.png ; $A = S ^ { \prime }$ ; confidence 0.502
  
131. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png ; $\dot { u } = A _ { n } u$ ; confidence 0.195
+
131. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091730/s09173026.png ; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001010.png ; $\delta _ { a }$ ; confidence 0.195
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020040.png ; $Z ^ { x } , B ^ { x } , H ^ { x }$ ; confidence 0.194
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007049.png ; $\operatorname { GCD } ( \alpha , b ) = 1$ ; confidence 0.501
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022046.png ; $v$ ; confidence 0.193
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102204.png ; $( X _ { t } ) _ { t } \geq 0$ ; confidence 0.501
  
135. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
+
135. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046280/h046280124.png ; $X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$ ; confidence 0.501
  
136. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083330/s0833306.png ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.193
+
136. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201107.png ; $\varphi ( \alpha , b , 1 ) = \alpha b$ ; confidence 0.501
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
+
138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110490/c1104902.png ; $\sqrt { 2 }$ ; confidence 0.191
+
139. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650103.png ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500
  
140. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
+
140. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $< 2 a$ ; confidence 0.500
  
141. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120432.png ; $\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$ ; confidence 0.191
+
141. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090170/s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500
  
142. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080190/r08019038.png ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.191
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240356.png ; $E ( Z _ { 1 } ) = 0$ ; confidence 0.500
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004059.png ; $\phi _ { L } ^ { * } \hat { \lambda } = d _ { 1 } d _ { 2 } \lambda \Leftrightarrow \phi _ { L } \phi _ { L } = d _ { 1 } d _ { 2 } id A$ ; confidence 0.191
+
143. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240272.png ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / MS _ { e }$ ; confidence 0.500
  
144. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a0107009.png ; $B / \text { Ind } ( r )$ ; confidence 0.499
  
145. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074710/p07471055.png ; $g _ { 0 } g ^ { \prime } \in G$ ; confidence 0.189
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210130.png ; $\Omega ( a ) = \operatorname { dim } L ( a / ( \omega ) )$ ; confidence 0.499
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189
+
146. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
  
147. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010308.png ; $v _ { ( E ) } = v$ ; confidence 0.188
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010250.png ; $A x - \hat { \lambda } x = - \delta A x$ ; confidence 0.499
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188
+
148. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097290/w09729017.png ; $A _ { n } ( x _ { 0 } )$ ; confidence 0.499
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050206.png ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta } K ) \text { as } x \rightarrow \infty$ ; confidence 0.498
  
150. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
+
150. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022290/c02229022.png ; $+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$ ; confidence 0.498
  
151. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
+
151. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023380/c023380172.png ; $C ( S ^ { n } )$ ; confidence 0.498
  
152. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046370/h04637012.png ; $\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$ ; confidence 0.187
+
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040234.png ; $E ( \Gamma , \Delta ) \dagger _ { D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 0.498
  
153. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103302.png ; $| X | ^ { \prime }$ ; confidence 0.497
  
154. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780231.png ; $\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$ ; confidence 0.185
+
154. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051040/i05104010.png ; $3 a$ ; confidence 0.497
  
155. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073460/p07346086.png ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.185
+
155. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101008.png ; $V ^ { \ominus }$ ; confidence 0.185
+
156. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083000/s08300037.png ; $D _ { n } X \subset S ^ { n } \backslash X$ ; confidence 0.497
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240445.png ; $y _ { 1 } , \dots , y _ { p }$ ; confidence 0.497
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530133.png ; $\Pi ^ { N } \tau$ ; confidence 0.183
+
158. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022920/c02292049.png ; $\operatorname { lm } c _ { 3 } = 0$ ; confidence 0.496
  
159. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
+
159. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; $74$ ; confidence 0.496
  
160. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031042.png ; $k$ ; confidence 0.496
  
161. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025970/c02597042.png ; $e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$ ; confidence 0.182
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068021.png ; $\geq n 0 ( A )$ ; confidence 0.496
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a0102909.png ; $\pi X : \alpha X \rightarrow X$ ; confidence 0.180
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004042.png ; $\operatorname { Th } D$ ; confidence 0.496
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240282.png ; $\hat { \psi } = \sum _ { i = 1 } ^ { q } d _ { i } z _ { i }$ ; confidence 0.180
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a1100204.png ; $D = k$ ; confidence 0.495
  
164. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432804.png ; $\hat { K } _ { i }$ ; confidence 0.180
+
164. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059490/l059490127.png ; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495
  
165. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043340/g04334048.png ; $\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$ ; confidence 0.180
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022065.png ; $\alpha _ { 1 } , \alpha _ { 2 } \in R$ ; confidence 0.495
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197046.png ; $U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$ ; confidence 0.179
+
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008050.png ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }$ ; confidence 0.495
  
168. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ { i \psi }$ ; confidence 0.179
+
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495
  
169. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072850/p0728502.png ; $_ { k }$ ; confidence 0.179
+
169. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042210/f04221073.png ; $\tilde { f } : Y \rightarrow X$ ; confidence 0.494
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040129.png ; $\tilde { \varphi } _ { L } : \tilde { A } \rightarrow P ^ { 1 }$ ; confidence 0.179
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007018.png ; $\pi _ { p } ( T ) = \operatorname { inf } c$ ; confidence 0.493
  
171. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062019.png ; $\alpha \in C \cup \{ \infty \}$ ; confidence 0.176
+
171. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001030.png ; $\frac { \delta x } { \| x \| } \leq \frac { k ( A ) } { 1 - k ( A ) \frac { \| \delta A \| } { \| A \| } } ( \frac { \| \delta A \| } { \| A \| } + \frac { \| \delta b \| } { \| b \| } )$ ; confidence 0.176
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040688.png ; $F m _ { F }$ ; confidence 0.175
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016082.png ; $[ M _ { 1 } ^ { - 1 } A M _ { 2 } ^ { - 1 } ] [ M _ { 2 } \times ] = [ M _ { 1 } ^ { - 1 } b ]$ ; confidence 0.492
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a1300903.png ; $G = H _ { 1 } ^ { * } \ldots ^ { * } H _ { k }$ ; confidence 0.492
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210131.png ; $L ( \mathfrak { a } ^ { - 1 } ) - \operatorname { dim } \Omega ( \mathfrak { a } ) = d [ \mathfrak { a } ] - \mathfrak { g } + 1$ ; confidence 0.174
+
175. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052000/i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
+
176. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070070/o070070118.png ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491
  
177. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110160/c11016063.png ; $( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$ ; confidence 0.173
+
177. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491
  
178. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147033.png ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.172
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020026.png ; $D ( \phi ) = D ( \phi _ { 1 } ) \ldots D ( \phi _ { n } ) = D ( \psi _ { 1 } ) \ldots D ( \psi _ { m } ) = D ( \psi )$ ; confidence 0.490
  
179. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110240/h11024025.png ; $n _ { s } + n _ { u } = n$ ; confidence 0.172
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490
  
180. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080680/r08068010.png ; $x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$ ; confidence 0.172
+
180. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067960/n0679601.png ; $12$ ; confidence 0.490
  
181. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s08703096.png ; $\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$ ; confidence 0.172
+
181. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075050/p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022031.png ; $\mathfrak { c } _ { 1 } , \ldots , \mathfrak { c } _ { p }$ ; confidence 0.172
+
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu , n } ) \text { as } n \rightarrow \infty$ ; confidence 0.172
+
183. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040193.png ; $\tilde { \Omega } _ { D } F$ ; confidence 0.172
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023050.png ; $G ( u )$ ; confidence 0.489
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022012.png ; $w ^ { r } v$ ; confidence 0.171
+
185. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020102.png ; $V \not \equiv W$ ; confidence 0.489
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012075.png ; $a _ { U _ { 2 } }$ ; confidence 0.171
+
186. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065440/m06544062.png ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104202.png ; $E ( X _ { 1 } ) = 0 \quad \text { and } \quad E ( X _ { n } + 1 | X _ { 1 } , \ldots , X _ { n } ) = 0$ ; confidence 0.170
+
187. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489
  
188. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033570/d0335708.png ; $\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$ ; confidence 0.170
+
188. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092720/t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024067.png ; $e _ { j k }$ ; confidence 0.169
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010184.png ; $| \hat { \lambda } - \lambda |$ ; confidence 0.488
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068093.png ; $L f \theta$ ; confidence 0.169
+
190. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040313.png ; $\epsilon _ { 2,0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { i , 1 } ^ { A } ( \alpha , b , c , d ) \text { for all } i < m$ ; confidence 0.169
+
191. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101805.png ; $\alpha _ { k } , b , z$ ; confidence 0.168
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040146.png ; $i$ ; confidence 0.488
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046010.png ; $\operatorname { lim } _ { \| x \| \rightarrow 0 } \| h \| ^ { - 1 } \| f ( a + h ) - f ( a ) - \delta f ( a , h ) \| = 0$ ; confidence 0.167
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032021.png ; $B _ { j }$ ; confidence 0.487
  
194. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087270/s08727063.png ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.167
+
194. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063240/m063240749.png ; $\prod x$ ; confidence 0.487
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040337.png ; $\operatorname { tg } E ( \lambda x _ { 0 } , \ldots , x _ { x } - 1 , \lambda y 0 , \ldots , y _ { n } - 1 )$ ; confidence 0.167
+
195. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083380/s08338085.png ; $d \in C$ ; confidence 0.487
  
196. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087790/s08779013.png ; $RP ^ { \infty }$ ; confidence 0.165
+
196. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487
  
197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164
+
197. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105504.png ; $\varphi g$ ; confidence 0.487
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046052.png ; $\overline { D }$ ; confidence 0.164
+
198. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021098.png ; $\sum _ { k = 1 } ^ { g } ( A _ { k } B _ { k } ^ { \prime } - B _ { k } A _ { k } ^ { \prime } ) = 2 \pi i \sum _ { j = 1 } ^ { N } c _ { j } \int _ { L _ { j } } \omega _ { 1 }$ ; confidence 0.487
  
199. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065030/m06503013.png ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.163
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022054.png ; $\overline { W } ^ { T }$ ; confidence 0.486
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010150.png ; $\frac { \| ( A + \delta A ) ^ { + } - A ^ { + } \| } { \| A ^ { + } \| _ { 2 } } \leq \mu \frac { k ( A ) \frac { \| \delta A \| _ { 2 } } { \| A \| _ { 2 } } } { 1 - k ( A ) \frac { \| \delta A \| _ { 2 } } { \| ^ { A } \| _ { 2 } } }$ ; confidence 0.162
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046051.png ; $h \in X$ ; confidence 0.486
  
201. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002017.png ; $N$ ; confidence 0.161
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010189.png ; $i = 1 , \dots , n$ ; confidence 0.485
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485
  
203. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050790/i05079039.png ; $| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$ ; confidence 0.160
+
203. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485
  
204. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004014.png ; $D = \{ F m , \dagger _ { D } )$ ; confidence 0.159
+
204. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043280/g0432802.png ; $x$ ; confidence 0.485
  
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006049.png ; $\{ X _ { z } : z \in Z ^ { d } \}$ ; confidence 0.485
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020054.png ; $\left. \begin{array} { r c c } { R } & { \stackrel { \mu \pi _ { 1 } } { \rightarrow } } & { A } \\ { \mu \pi _ { 2 } \downarrow } & { \square } & { \downarrow \alpha } \\ { B } & { \rightarrow } & { X } \end{array} \right.$ ; confidence 0.157
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a1102206.png ; $X _ { S }$ ; confidence 0.484
  
207. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040255.png ; $D _ { c } = A _ { c } - A _ { c } ^ { \varnothing }$ ; confidence 0.157
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010111.png ; $p < m$ ; confidence 0.484
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484
  
209. https://www.encyclopediaofmath.org/legacyimages/z/z099/z099250/z09925023.png ; $001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$ ; confidence 0.156
+
209. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001025.png ; $\| \delta x \| \leq \| A ^ { - 1 } \delta A \| \| _ { x } \| + \| A ^ { - 1 } \delta A \| _ { \| } \delta x \| + \| A ^ { - 1 } \delta b \|$ ; confidence 0.156
+
210. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092250/t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484
  
211. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057590/l05759015.png ; $\sqrt { 2 }$ ; confidence 0.155
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010266.png ; $2$ ; confidence 0.484
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040244.png ; $x + \operatorname { tg } E ( K ( x ) , L ( x ) )$ ; confidence 0.154
+
212. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024035.png ; $w ^ { 2 } = a _ { 0 } z ^ { 2 } + a _ { 1 } z + \alpha _ { 2 }$ ; confidence 0.484
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040461.png ; $^ { \times } L D ( K ) = S P P _ { U } K$ ; confidence 0.152
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050237.png ; $v < 1$ ; confidence 0.483
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040634.png ; $S _ { P } ^ { \mathfrak { D } \mathfrak { I } }$ ; confidence 0.152
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483
  
215. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022690/c02269052.png ; $\Delta = \tilde { A } + \hat { B } - \hat { C }$ ; confidence 0.152
+
215. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081110/r08111018.png ; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040102.png ; $G$ ; confidence 0.152
+
216. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092240/t0922406.png ; $k = R / m$ ; confidence 0.483
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010108.png ; $p = \operatorname { max } _ { 1 \leq i \leq n } \frac { | b _ { i } - \sum _ { j = 1 } ^ { n } \alpha _ { i } x _ { j } | } { B N + A N \cdot \sum _ { j = 1 } ^ { n } | x _ { j } | }$ ; confidence 0.152
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600198.png ; $N _ { 0 }$ ; confidence 0.151
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240314.png ; $\hat { \beta } = ( X ^ { \prime } X ) ^ { - 1 } X ^ { \prime } y$ ; confidence 0.148
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008084.png ; $8$ ; confidence 0.482
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020061.png ; $H _ { 2 / / } \otimes l _ { 1 } ( A , B )$ ; confidence 0.148
+
220. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022370/c02237023.png ; $N = L . L$ ; confidence 0.482
  
221. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061130/l06113042.png ; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
+
221. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052410/i05241032.png ; $y = Arc$ ; confidence 0.482
  
222. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006052.png ; $\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482
  
223. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680082.png ; $\{ \tau _ { j } ^ { e } \} \in G _ { I }$ ; confidence 0.146
+
223. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200609.png ; $\Omega$ ; confidence 0.482
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010118.png ; $A \in R ^ { m \times n }$ ; confidence 0.144
+
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a1100609.png ; $\beta ( A , B ) = \operatorname { E } \operatorname { sup } _ { B \in B } | P ( B | A ) - P ( B ) |$ ; confidence 0.481
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040412.png ; $Mod ^ { * } L D = S P Mod ^ { * } L D$ ; confidence 0.144
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240519.png ; $Z _ { 13 }$ ; confidence 0.481
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020084.png ; $r$ ; confidence 0.144
+
226. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075560/p075560136.png ; $P Q = P \times Q$ ; confidence 0.481
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a01297077.png ; $\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$ ; confidence 0.144
+
227. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087450/s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010164.png ; $\tilde { \varepsilon } [ ( 1 + \eta \tilde { k } ) \alpha + \beta \gamma ]$ ; confidence 0.144
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240501.png ; $9$ ; confidence 0.481
  
229. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780134.png ; $F = p t$ ; confidence 0.143
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025021.png ; $E _ { 1 }$ ; confidence 0.481
  
230. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230164.png ; $H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$ ; confidence 0.143
+
230. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043010/g04301029.png ; $X \times F$ ; confidence 0.480
  
231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
+
231. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110130/k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040113.png ; $T , \varphi \operatorname { lo } \psi$ ; confidence 0.142
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480
  
233. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830267.png ; $\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$ ; confidence 0.142
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480
  
234. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047740/h047740112.png ; $R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$ ; confidence 0.142
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033015.png ; $N ^ { * }$ ; confidence 0.479
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240331.png ; $p _ { 1 }$ ; confidence 0.141
+
235. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055910/k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
  
236. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086770/s08677096.png ; $5 + 7 n$ ; confidence 0.141
+
236. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110230/p110230174.png ; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140
+
237. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533026.png ; $18$ ; confidence 0.479
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010236.png ; $\hat { \lambda }$ ; confidence 0.479
  
239. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086330/s08633021.png ; $\sigma _ { d x } ( A )$ ; confidence 0.138
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021066.png ; $\omega 1,2$ ; confidence 0.479
  
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004074.png ; $5$ ; confidence 0.478
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040613.png ; $h : F m _ { P } \rightarrow M e _ { S _ { P } } \mathfrak { M }$ ; confidence 0.136
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055054.png ; $x ^ { G }$ ; confidence 0.478
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png ; $3 + 5$ ; confidence 0.136
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021054.png ; $a - x \neq 0$ ; confidence 0.478
  
243. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png ; $Q _ { A }$ ; confidence 0.136
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024019.png ; $y$ ; confidence 0.478
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478
  
245. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012027.png ; $T _ { W \alpha } = T$ ; confidence 0.134
+
245. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095440/u09544022.png ; $O ( \epsilon _ { N } )$ ; confidence 0.478
  
246. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120342.png ; $O \subset A _ { R }$ ; confidence 0.132
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022038.png ; $A l ( z )$ ; confidence 0.477
  
247. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911037.png ; $p i n$ ; confidence 0.132
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032024.png ; $\lambda _ { j } ^ { ( l ) } \in R$ ; confidence 0.477
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006023.png ; $= \frac { 1 } { 2 } \operatorname { sup } \sum _ { i = 1 } ^ { I } \sum _ { j = 1 } ^ { J } \operatorname { Pr } ( A _ { i } \cap B _ { j } ) - P ( A _ { i } ) P ( B _ { j } )$ ; confidence 0.132
+
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477
  
249. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110120/p110120214.png ; $D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$ ; confidence 0.131
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033021.png ; $\beta \frac { 1 } { r } / r$ ; confidence 0.477
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031018.png ; $22 ^ { x }$ ; confidence 0.131
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110640/a11064014.png ; $\Omega$ ; confidence 0.477
  
251. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011084.png ; $L \cup O$ ; confidence 0.130
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106405.png ; $k$ ; confidence 0.477
  
252. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081980/r08198090.png ; $\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$ ; confidence 0.130
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013032.png ; $\phi$ ; confidence 0.476
  
253. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060640/l0606404.png ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001065.png ; $0$ ; confidence 0.129
+
254. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043020/g043020155.png ; $V \oplus \mathfrak { g }$ ; confidence 0.476
  
255. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064180/m064180110.png ; $\mathfrak { k } _ { n } | _ { 0 } = 0$ ; confidence 0.128
+
255. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476
  
256. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040518.png ; $\Omega$ ; confidence 0.476
  
257. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040116.png ; $v \wedge \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040144.png ; $R \subset P ^ { 2 }$ ; confidence 0.476
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010134.png ; $\mathfrak { A } _ { E }$ ; confidence 0.121
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240305.png ; $4$ ; confidence 0.475
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043022.png ; $p _ { k A } ^ { * } ( t ) = 1 , \quad h \in H ; \quad p _ { i A } ^ { * } ( t ) = 0 , \quad i , h \in H , i \neq h$ ; confidence 0.120
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png ; $x$ ; confidence 0.475
  
260. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020188.png ; $t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$ ; confidence 0.119
+
260. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040336.png ; $E ( x _ { 0 } , y _ { 0 } ) , \ldots , E ( x _ { x } - 1 , y _ { n } - 1 ) \operatorname { t } _ { D }$ ; confidence 0.118
+
261. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a0105208.png ; $k _ { \| }$ ; confidence 0.475
  
262. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140169.png ; $q _ { A }$ ; confidence 0.118
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040503.png ; $F \in C$ ; confidence 0.475
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040397.png ; $\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$ ; confidence 0.117
+
263. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055025.png ; $X / G$ ; confidence 0.474
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032060/d03206068.png ; $| x ( t ( t ) ) \| \leq \rho$ ; confidence 0.117
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040186.png ; $( A / S 2 DF , F / S 2 DF )$ ; confidence 0.116
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240470.png ; $n$ ; confidence 0.474
  
266. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740318.png ; $Z [ X _ { é } : e \in E$ ; confidence 0.114
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474
  
267. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043021.png ; $p _ { i A } ^ { * } ( t + 1 ) = \sum _ { j \in S } p _ { j } p _ { i A } ^ { * } ( t ) , \quad t \geq 0 , \quad i \in S \backslash H , \quad h \in H$ ; confidence 0.114
+
267. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738068.png ; $t \in S$ ; confidence 0.474
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040520.png ; $d ^ { * } L D$ ; confidence 0.112
+
268. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026480/c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474
  
269. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030210/d03021016.png ; $2$ ; confidence 0.110
+
269. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043026.png ; $q _ { k h } = 1 , \quad h \in H ; \quad q _ { k } = 0 , \quad i , h \in H , i \neq h$ ; confidence 0.109
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240499.png ; $X _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004045.png ; $\Gamma \operatorname { tg } \varphi$ ; confidence 0.107
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105506.png ; $\phi _ { g } . \phi _ { h } = \phi _ { g h }$ ; confidence 0.473
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040548.png ; $v$ ; confidence 0.106
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473
  
273. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046080/h04608018.png ; $| x _ { \mathfrak { j } } | \leq M$ ; confidence 0.106
+
273. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110080/k1100801.png ; $W _ { C }$ ; confidence 0.473
  
274. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050850/i05085060.png ; $A < \operatorname { ln } d X$ ; confidence 0.106
+
274. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
  
275. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377057.png ; $\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$ ; confidence 0.104
+
275. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064000/m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018026.png ; $\lambda _ { x } = n$ ; confidence 0.473
  
277. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472
  
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230115.png ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.101
+
278. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004010.png ; $\lambda \varphi 0 , \ldots , \varphi _ { x } - 1$ ; confidence 0.095
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105508.png ; $\phi _ { t }$ ; confidence 0.472
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021032.png ; $A _ { 1 } ^ { \prime } , B _ { 1 } ^ { \prime } , \dots , A ^ { \prime } , B _ { g } ^ { \prime }$ ; confidence 0.471
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050216.png ; $A _ { 2 } = \prod _ { m _ { 2 } } ^ { 2 } \geq 2 \zeta ( m ^ { 2 } ) = 2.49$ ; confidence 0.094
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091010/s09101020.png ; $c = \operatorname { const } \neq 0$ ; confidence 0.470
  
282. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083460/s08346028.png ; $\operatorname { Ccm } ( G )$ ; confidence 0.094
+
282. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093670/t09367092.png ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040331.png ; $\operatorname { Id } E ( x , x ) \text { and } x , E ( x , y ) | _ { D } y$ ; confidence 0.093
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022029.png ; $C = \{ h \in H : ( ( h , e _ { 1 } ) , \ldots , ( h , e _ { x } ) ) \in B \}$ ; confidence 0.470
  
284. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150450.png ; $\operatorname { sin } 0$ ; confidence 0.092
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469
  
285. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073760/p0737605.png ; $\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$ ; confidence 0.090
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040263.png ; $- 1 A$ ; confidence 0.469
  
286. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013051.png ; $\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$ ; confidence 0.089
+
286. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110250/h11025012.png ; $T ^ { \aleph } x \in A$ ; confidence 0.469
  
287. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088
+
287. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021040.png ; $i \neq i$ ; confidence 0.468
  
288. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300308.png ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068035.png ; $A _ { i } ( n ) = \sum _ { 1 \leq a _ { i } \leq n } 1$ ; confidence 0.468
  
289. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076820/q076820155.png ; $\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$ ; confidence 0.087
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010249.png ; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024018.png ; $E _ { i }$ ; confidence 0.085
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467
  
291. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940319.png ; $\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$ ; confidence 0.085
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $9 -$ ; confidence 0.467
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006022.png ; $\beta ( A , B ) = \operatorname { sup } _ { C \in A \otimes B } | P _ { A \otimes B } ( C ) - ( P _ { A } \times P _ { B } ) ( C ) | =$ ; confidence 0.084
+
292. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180181.png ; $E _ { x } ( s )$ ; confidence 0.467
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040304.png ; $O ( a , b )$ ; confidence 0.083
+
293. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837017.png ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467
  
294. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.083
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010109.png ; $B N = \operatorname { max } _ { 1 \leq i \leq x } | b _ { i } |$ ; confidence 0.467
  
295. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
+
295. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738057.png ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466
  
296. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002092.png ; $V _ { V }$ ; confidence 0.082
+
296. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095290/u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043025.png ; $q _ { i h } = \sum _ { j \in S } p _ { i } q _ { h } , \quad i \in S \backslash H , \quad h \in H$ ; confidence 0.082
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012094.png ; $y _ { 0 }$ ; confidence 0.466
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027320/c027320130.png ; $C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$ ; confidence 0.081
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050262.png ; $N _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { C } ^ { \# } ( n )$ ; confidence 0.466
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300409.png ; $\lambda ^ { F m } ( \varphi 0 , \dots , \varphi _ { m } - 1 )$ ; confidence 0.080
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z }$ ; confidence 0.465
  
300. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040736.png ; $^ { * } L D S = \cup \{ \text { Alg } Mod ^ { * } L D S _ { P } : \text { Paset } \}$ ; confidence 0.080
+
300. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013012.png ; $1 + n$ ; confidence 0.465

Revision as of 08:36, 6 September 2019

List

1. p072930169.png ; $t _ { \gamma }$ ; confidence 0.533

2. a130050228.png ; $G$ ; confidence 0.533

3. a0101208.png ; $P _ { N } ( z )$ ; confidence 0.533

4. a13018015.png ; $\tau \in V o c$ ; confidence 0.532

5. m12011020.png ; $t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$ ; confidence 0.532

6. m06551020.png ; $n _ { \Delta } = 1$ ; confidence 0.532

7. a130060160.png ; $S _ { F }$ ; confidence 0.532

8. a1201205.png ; $A = ( a _ { i } j )$ ; confidence 0.531

9. a1300105.png ; $4$ ; confidence 0.531

10. d032450371.png ; $\{ fd ( M )$ ; confidence 0.531

11. s110040107.png ; $\phi ( D _ { X } ) = D _ { X }$ ; confidence 0.531

12. a110220110.png ; $R _ { 2 }$ ; confidence 0.531

13. a13007021.png ; $3.4 , \ldots , 89$ ; confidence 0.530

14. a01012010.png ; $\lambda _ { x } = a + n h$ ; confidence 0.530

15. a11006034.png ; $\{ X _ { i } : u \in I \}$ ; confidence 0.529

16. c026010468.png ; $P s$ ; confidence 0.529

17. a110220114.png ; $H , m$ ; confidence 0.529

18. a11001064.png ; $\rho ( | A ^ { - 1 } \delta A | ) < 1$ ; confidence 0.528

19. a11022088.png ; $R ( f ) ( . ) = g ( L ( h _ { 1 } ) ( . ) , \ldots , L ( h _ { j } ) ( . ) )$ ; confidence 0.527

20. a11006024.png ; $\{ A _ { 1 } , \dots , A _ { l } \}$ ; confidence 0.527

21. c02545035.png ; $T ^ { * }$ ; confidence 0.527

22. a130240329.png ; $x$ ; confidence 0.527

23. c1100106.png ; $T : A _ { j } \rightarrow A$ ; confidence 0.526

24. m12009011.png ; $- i \partial / \partial x _ { j }$ ; confidence 0.526

25. a01052052.png ; $a _ { n }$ ; confidence 0.526

26. a13007032.png ; $d > c$ ; confidence 0.525

27. a130050196.png ; $Z _ { A ( p ) } ( y ) = \prod _ { r = 1 } ^ { \infty } ( 1 - y ^ { r } ) ^ { - 1 } = \sum _ { n = 0 } ^ { \infty } p ( n ) y ^ { n }$ ; confidence 0.525

28. a01021092.png ; $w _ { 3 }$ ; confidence 0.525

29. c02757085.png ; $z$ ; confidence 0.525

30. t12008049.png ; $( 5 \times 10 ^ { 6 } r ) ^ { 3 }$ ; confidence 0.525

31. i050650148.png ; $\therefore M \rightarrow E$ ; confidence 0.524

32. l12015025.png ; $w \in T V$ ; confidence 0.524

33. a13006022.png ; $\pi ( x ) \sim \frac { x } { \operatorname { log } x } \text { as } x \rightarrow \infty$ ; confidence 0.524

34. a11030024.png ; $\theta _ { X }$ ; confidence 0.524

35. a1100109.png ; $\overline { X } - X$ ; confidence 0.524

36. a120070121.png ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u v$ ; confidence 0.523

37. a1102803.png ; $u$ ; confidence 0.523

38. a0106704.png ; $\tilde { y } \in \tilde { Y } = Y$ ; confidence 0.523

39. d031830290.png ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523

40. m06550014.png ; $P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$ ; confidence 0.523

41. a1300406.png ; $\lambda ^ { Fm } : Fm ^ { n } \rightarrow Fm$ ; confidence 0.522

42. a01021069.png ; $( - 1 / z ) d z$ ; confidence 0.522

43. b01701014.png ; $\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$ ; confidence 0.522

44. r13016036.png ; $R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$ ; confidence 0.522

45. a01012055.png ; $\{ n _ { k } \}$ ; confidence 0.521

46. a11001080.png ; $| v |$ ; confidence 0.521

47. v09635084.png ; $a \perp b$ ; confidence 0.521

48. w0973508.png ; $A = N \oplus s$ ; confidence 0.521

49. f1202409.png ; $t \mapsto t + T$ ; confidence 0.520

50. m06249054.png ; $F _ { \infty } ^ { s }$ ; confidence 0.520

51. m13022071.png ; $T$ ; confidence 0.520

52. p074970164.png ; $E X _ { k } = a$ ; confidence 0.520

53. a01055036.png ; $Z _ { p }$ ; confidence 0.520

54. a130240418.png ; $n ^ { - 1 } M _ { E }$ ; confidence 0.519

55. a12005042.png ; $\lambda \in S _ { \theta _ { 0 } }$ ; confidence 0.519

56. e03516059.png ; $\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$ ; confidence 0.519

57. g04465025.png ; $a _ { y }$ ; confidence 0.519

58. k056010160.png ; $R ^ { k } p \times ( F )$ ; confidence 0.519

59. a11033013.png ; $U _ { j } ^ { * } = \{ h _ { 1 } , \dots , h _ { j } \} \cap [ 0 , p ]$ ; confidence 0.519

60. a110420119.png ; $x \in H ^ { + }$ ; confidence 0.518

61. r082290200.png ; $p _ { \alpha } = e$ ; confidence 0.518

62. a11010076.png ; $\operatorname { inf } _ { \epsilon > 0 ; \mu \in W } \operatorname { sup } \{ g ( x ) : g \in \operatorname { span } ( M ) , w g \leq w f + \epsilon \}$ ; confidence 0.518

63. a11010032.png ; $( T _ { n } ) _ { n \in N }$ ; confidence 0.517

64. a130050149.png ; $= \prod _ { p \in P } ( 1 + | p | ^ { - z } + | p | ^ { - 2 z } + \ldots ) =$ ; confidence 0.517

65. b0154406.png ; $E X _ { 2 j } = \mu _ { 2 }$ ; confidence 0.517

66. a11002042.png ; $( \frac { q ^ { d + 1 } - 1 } { q ^ { - 1 } } , \frac { q ^ { d } - 1 } { q ^ { - 1 } } , \frac { q ^ { d - 1 } - 1 } { q ^ { - 1 } } )$ ; confidence 0.517

67. a0102407.png ; $j = 0 , \dots , n$ ; confidence 0.517

68. a12008041.png ; $v = d u f d t$ ; confidence 0.516

69. a01204016.png ; $\partial M ^ { n + 1 } = K ^ { n }$ ; confidence 0.516

70. b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516

71. a01020021.png ; $\phi = ( \phi _ { 1 } , \ldots , \phi _ { n } )$ ; confidence 0.516

72. a01024044.png ; $u _ { 1 } = \int _ { L } \phi _ { 1 } , \ldots , u _ { g } = \int _ { L } \phi _ { g }$ ; confidence 0.516

73. a13013026.png ; $( 1 )$ ; confidence 0.515

74. c0215505.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$ ; confidence 0.515

75. w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515

76. b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514

77. c12004012.png ; $( f \in H _ { C } ( D ) )$ ; confidence 0.513

78. a11038040.png ; $\sim 2$ ; confidence 0.512

79. d13009046.png ; $1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$ ; confidence 0.512

80. a130040586.png ; $Fm _ { F }$ ; confidence 0.512

81. a110010255.png ; $\delta A = - H . | A | \cdot \operatorname { diag } ( \operatorname { sgn } ( x _ { i } ) )$ ; confidence 0.511

82. a11010019.png ; $p _ { U } ( x ) \leq p _ { V K } ( x _ { 0 } ) + \epsilon$ ; confidence 0.511

83. p074970165.png ; $DX _ { k } = \sigma ^ { 2 }$ ; confidence 0.511

84. r082150142.png ; $\operatorname { exp } _ { q } X = r$ ; confidence 0.511

85. a01021017.png ; $\omega = p d z , \quad \pi = q d z , \quad \alpha = \alpha ( z )$ ; confidence 0.510

86. a1103601.png ; $s : H \rightarrow G$ ; confidence 0.510

87. p07303077.png ; $\mathfrak { g } = C$ ; confidence 0.510

88. t09260032.png ; $\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$ ; confidence 0.510

89. a13006092.png ; $G _ { q , k }$ ; confidence 0.510

90. a130240420.png ; $\zeta _ { 1 } , \ldots , \zeta _ { q }$ ; confidence 0.510

91. a11008016.png ; $c _ { X } \leq 0$ ; confidence 0.509

92. d12023076.png ; $Z ^ { * }$ ; confidence 0.508

93. l059110155.png ; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508

94. a01058028.png ; $k = 1 , u 0 = 3 / 2 , u _ { - 1 } = - 1 / 2$ ; confidence 0.508

95. a01018028.png ; $\sigma > c$ ; confidence 0.508

96. a110040247.png ; $H _ { 1 } , \ldots , H _ { k } : C ^ { M } \rightarrow C$ ; confidence 0.507

97. i05003048.png ; $I _ { X }$ ; confidence 0.507

98. i130030142.png ; $\pi$ ; confidence 0.507

99. m06544031.png ; $\Phi _ { t } = id$ ; confidence 0.507

100. n06796016.png ; $q 2 = 6$ ; confidence 0.507

101. s08540076.png ; $x _ { i } \in \pi$ ; confidence 0.507

102. a130050252.png ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506

103. h04800018.png ; $\Omega \in \Delta ^ { n } S$ ; confidence 0.506

104. l05916065.png ; $A ^ { ( 0 ) }$ ; confidence 0.506

105. s087450221.png ; $a T \rightarrow \infty$ ; confidence 0.506

106. a130240547.png ; $T ^ { 2 }$ ; confidence 0.505

107. a0102106.png ; $I \subset I I \subset M$ ; confidence 0.505

108. a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505

109. a01020025.png ; $D : \mathfrak { D } \rightarrow A$ ; confidence 0.505

110. a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505

111. f04008051.png ; $P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$ ; confidence 0.505

112. s09026014.png ; $d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$ ; confidence 0.505

113. t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505

114. t0933407.png ; $S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$ ; confidence 0.505

115. a130060159.png ; $S _ { Y }$ ; confidence 0.505

116. a12012028.png ; $\beta j > 0$ ; confidence 0.505

117. a130040128.png ; $\phi ^ { \prime }$ ; confidence 0.504

118. a13013049.png ; $k$ ; confidence 0.504

119. b01697056.png ; $\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.504

120. c120180209.png ; $\varepsilon$ ; confidence 0.504

121. n06796020.png ; $q 2 = 4$ ; confidence 0.504

122. a01018042.png ; $\alpha \neq - 1 , - 2 , \dots ,$ ; confidence 0.504

123. a1100808.png ; $( c _ { x } , c _ { y } ) = c ( - \frac { \xi } { \omega } , - \frac { \eta } { \omega } ) = c ( - \operatorname { cos } \theta , - \operatorname { sin } \theta )$ ; confidence 0.503

124. a11022023.png ; $C _ { \pi }$ ; confidence 0.503

125. a11016065.png ; $\| x _ { k } - x ^ { * } \| _ { A } \leq \frac { 1 } { C _ { m } ( 1 + 2 \eta ) } \| x _ { 0 } - x ^ { * } \| _ { A }$ ; confidence 0.503

126. a110010233.png ; $\lambda$ ; confidence 0.503

127. a110420122.png ; $y \in H$ ; confidence 0.503

128. m064590192.png ; $\alpha p$ ; confidence 0.503

129. a01058027.png ; $k = 0 , u _ { 0 } = 1$ ; confidence 0.503

130. a014060256.png ; $A = S ^ { \prime }$ ; confidence 0.502

131. s09173026.png ; $H ^ { n - k } \cap S ^ { k }$ ; confidence 0.502

132. a130040153.png ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501

133. a13007049.png ; $\operatorname { GCD } ( \alpha , b ) = 1$ ; confidence 0.501

134. a1102204.png ; $( X _ { t } ) _ { t } \geq 0$ ; confidence 0.501

135. h046280124.png ; $X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$ ; confidence 0.501

136. a1201107.png ; $\varphi ( \alpha , b , 1 ) = \alpha b$ ; confidence 0.501

137. a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501

138. a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500

139. i050650103.png ; $\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$ ; confidence 0.500

140. i130060185.png ; $< 2 a$ ; confidence 0.500

141. s0901702.png ; $\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$ ; confidence 0.500

142. a130240356.png ; $E ( Z _ { 1 } ) = 0$ ; confidence 0.500

143. a130240272.png ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / MS _ { e }$ ; confidence 0.500

144. a0107009.png ; $B / \text { Ind } ( r )$ ; confidence 0.499

145. a010210130.png ; $\Omega ( a ) = \operatorname { dim } L ( a / ( \omega ) )$ ; confidence 0.499

146. t1200104.png ; $m$ ; confidence 0.499

147. a110010250.png ; $A x - \hat { \lambda } x = - \delta A x$ ; confidence 0.499

148. w09729017.png ; $A _ { n } ( x _ { 0 } )$ ; confidence 0.499

149. a130050206.png ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta } K ) \text { as } x \rightarrow \infty$ ; confidence 0.498

150. c02229022.png ; $+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$ ; confidence 0.498

151. c023380172.png ; $C ( S ^ { n } )$ ; confidence 0.498

152. a130040234.png ; $E ( \Gamma , \Delta ) \dagger _ { D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 0.498

153. a0103302.png ; $| X | ^ { \prime }$ ; confidence 0.497

154. i05104010.png ; $3 a$ ; confidence 0.497

155. k13001035.png ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497

156. s08300037.png ; $D _ { n } X \subset S ^ { n } \backslash X$ ; confidence 0.497

157. a130240445.png ; $y _ { 1 } , \dots , y _ { p }$ ; confidence 0.497

158. c02292049.png ; $\operatorname { lm } c _ { 3 } = 0$ ; confidence 0.496

159. e12002023.png ; $74$ ; confidence 0.496

160. a12031042.png ; $k$ ; confidence 0.496

161. a01068021.png ; $\geq n 0 ( A )$ ; confidence 0.496

162. a13004042.png ; $\operatorname { Th } D$ ; confidence 0.496

163. a1100204.png ; $D = k$ ; confidence 0.495

164. l059490127.png ; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495

165. a11022065.png ; $\alpha _ { 1 } , \alpha _ { 2 } \in R$ ; confidence 0.495

166. a12013064.png ; $\theta _ { n } ^ { * }$ ; confidence 0.495

167. a13008050.png ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }$ ; confidence 0.495

168. a110010283.png ; $i = 0 , \ldots , n - 1$ ; confidence 0.495

169. f04221073.png ; $\tilde { f } : Y \rightarrow X$ ; confidence 0.494

170. a11007018.png ; $\pi _ { p } ( T ) = \operatorname { inf } c$ ; confidence 0.493

171. l11003082.png ; $M ( E ) = \vec { X }$ ; confidence 0.493

172. a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492

173. a11016082.png ; $[ M _ { 1 } ^ { - 1 } A M _ { 2 } ^ { - 1 } ] [ M _ { 2 } \times ] = [ M _ { 1 } ^ { - 1 } b ]$ ; confidence 0.492

174. a1300903.png ; $G = H _ { 1 } ^ { * } \ldots ^ { * } H _ { k }$ ; confidence 0.492

175. i05200039.png ; $\Delta ^ { i }$ ; confidence 0.491

176. o070070118.png ; $Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$ ; confidence 0.491

177. o07022045.png ; $\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$ ; confidence 0.491

178. a01020026.png ; $D ( \phi ) = D ( \phi _ { 1 } ) \ldots D ( \phi _ { n } ) = D ( \psi _ { 1 } ) \ldots D ( \psi _ { m } ) = D ( \psi )$ ; confidence 0.490

179. a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490

180. n0679601.png ; $12$ ; confidence 0.490

181. p07505047.png ; $( K _ { i } / k )$ ; confidence 0.490

182. a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489

183. b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489

184. b13023050.png ; $G ( u )$ ; confidence 0.489

185. e120020102.png ; $V \not \equiv W$ ; confidence 0.489

186. m06544062.png ; $d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$ ; confidence 0.489

187. s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489

188. t09272013.png ; $\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$ ; confidence 0.489

189. a110010184.png ; $| \hat { \lambda } - \lambda |$ ; confidence 0.488

190. d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488

191. d03346022.png ; $\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$ ; confidence 0.488

192. a110040146.png ; $i$ ; confidence 0.488

193. a11032021.png ; $B _ { j }$ ; confidence 0.487

194. m063240749.png ; $\prod x$ ; confidence 0.487

195. s08338085.png ; $d \in C$ ; confidence 0.487

196. w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487

197. a0105504.png ; $\varphi g$ ; confidence 0.487

198. a01021098.png ; $\sum _ { k = 1 } ^ { g } ( A _ { k } B _ { k } ^ { \prime } - B _ { k } A _ { k } ^ { \prime } ) = 2 \pi i \sum _ { j = 1 } ^ { N } c _ { j } \int _ { L _ { j } } \omega _ { 1 }$ ; confidence 0.487

199. a01022054.png ; $\overline { W } ^ { T }$ ; confidence 0.486

200. a01046051.png ; $h \in X$ ; confidence 0.486

201. a110010189.png ; $i = 1 , \dots , n$ ; confidence 0.485

202. a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485

203. d032450327.png ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.485

204. g0432802.png ; $x$ ; confidence 0.485

205. a11006049.png ; $\{ X _ { z } : z \in Z ^ { d } \}$ ; confidence 0.485

206. a1102206.png ; $X _ { S }$ ; confidence 0.484

207. a110010111.png ; $p < m$ ; confidence 0.484

208. a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484

209. d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484

210. t09225012.png ; $g ^ { ( i ) }$ ; confidence 0.484

211. a110010266.png ; $2$ ; confidence 0.484

212. a01024035.png ; $w ^ { 2 } = a _ { 0 } z ^ { 2 } + a _ { 1 } z + \alpha _ { 2 }$ ; confidence 0.484

213. a130050237.png ; $v < 1$ ; confidence 0.483

214. a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483

215. r08111018.png ; $g 00 = 1 - 2 \phi / c ^ { 2 }$ ; confidence 0.483

216. t0922406.png ; $k = R / m$ ; confidence 0.483

217. a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483

218. a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483

219. a13008084.png ; $8$ ; confidence 0.482

220. c02237023.png ; $N = L . L$ ; confidence 0.482

221. i05241032.png ; $y = Arc$ ; confidence 0.482

222. a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482

223. a1200609.png ; $\Omega$ ; confidence 0.482

224. a1100609.png ; $\beta ( A , B ) = \operatorname { E } \operatorname { sup } _ { B \in B } | P ( B | A ) - P ( B ) |$ ; confidence 0.481

225. a130240519.png ; $Z _ { 13 }$ ; confidence 0.481

226. p075560136.png ; $P Q = P \times Q$ ; confidence 0.481

227. s087450204.png ; $\theta _ { T } ^ { * }$ ; confidence 0.481

228. a130240501.png ; $9$ ; confidence 0.481

229. a11025021.png ; $E _ { 1 }$ ; confidence 0.481

230. g04301029.png ; $X \times F$ ; confidence 0.480

231. k11013020.png ; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480

232. a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480

233. a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480

234. a11033015.png ; $N ^ { * }$ ; confidence 0.479

235. k05591019.png ; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479

236. p110230174.png ; $F _ { p q } \neq F _ { p q } ^ { * }$ ; confidence 0.479

237. s08533026.png ; $18$ ; confidence 0.479

238. a110010236.png ; $\hat { \lambda }$ ; confidence 0.479

239. a01021066.png ; $\omega 1,2$ ; confidence 0.479

240. a13004074.png ; $5$ ; confidence 0.478

241. a01055054.png ; $x ^ { G }$ ; confidence 0.478

242. a01021054.png ; $a - x \neq 0$ ; confidence 0.478

243. a13024019.png ; $y$ ; confidence 0.478

244. b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478

245. u09544022.png ; $O ( \epsilon _ { N } )$ ; confidence 0.478

246. a01022038.png ; $A l ( z )$ ; confidence 0.477

247. a11032024.png ; $\lambda _ { j } ^ { ( l ) } \in R$ ; confidence 0.477

248. a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477

249. a01033021.png ; $\beta \frac { 1 } { r } / r$ ; confidence 0.477

250. a11064014.png ; $\Omega$ ; confidence 0.477

251. a0106405.png ; $k$ ; confidence 0.477

252. a13013032.png ; $\phi$ ; confidence 0.476

253. c02204098.png ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.476

254. g043020155.png ; $V \oplus \mathfrak { g }$ ; confidence 0.476

255. s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476

256. a130040518.png ; $\Omega$ ; confidence 0.476

257. a110040144.png ; $R \subset P ^ { 2 }$ ; confidence 0.476

258. a130240305.png ; $4$ ; confidence 0.475

259. a0100803.png ; $x$ ; confidence 0.475

260. k12003033.png ; $E \neq \emptyset$ ; confidence 0.475

261. a0105208.png ; $k _ { \| }$ ; confidence 0.475

262. a130040503.png ; $F \in C$ ; confidence 0.475

263. a01055025.png ; $X / G$ ; confidence 0.474

264. a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474

265. a130240470.png ; $n$ ; confidence 0.474

266. a13013048.png ; $i$ ; confidence 0.474

267. b01738068.png ; $t \in S$ ; confidence 0.474

268. c02648015.png ; $\prod _ { i \in l } ^ { * } A _ { i }$ ; confidence 0.474

269. l059160231.png ; $\lambda \geq \gamma$ ; confidence 0.474

270. a130240499.png ; $X _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474

271. a0105506.png ; $\phi _ { g } . \phi _ { h } = \phi _ { g h }$ ; confidence 0.473

272. a130240343.png ; $2$ ; confidence 0.473

273. k1100801.png ; $W _ { C }$ ; confidence 0.473

274. l059350157.png ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473

275. m064000100.png ; $\| u \| _ { H ^ { \prime } } \leq R$ ; confidence 0.473

276. a01018026.png ; $\lambda _ { x } = n$ ; confidence 0.473

277. a130060150.png ; $P _ { V } ^ { \# } ( n )$ ; confidence 0.472

278. l12016033.png ; $( S ^ { 1 } )$ ; confidence 0.472

279. a0105508.png ; $\phi _ { t }$ ; confidence 0.472

280. a01021032.png ; $A _ { 1 } ^ { \prime } , B _ { 1 } ^ { \prime } , \dots , A ^ { \prime } , B _ { g } ^ { \prime }$ ; confidence 0.471

281. s09101020.png ; $c = \operatorname { const } \neq 0$ ; confidence 0.470

282. t09367092.png ; $d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$ ; confidence 0.470

283. a11022029.png ; $C = \{ h \in H : ( ( h , e _ { 1 } ) , \ldots , ( h , e _ { x } ) ) \in B \}$ ; confidence 0.470

284. a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469

285. a130040263.png ; $- 1 A$ ; confidence 0.469

286. h11025012.png ; $T ^ { \aleph } x \in A$ ; confidence 0.469

287. a01021040.png ; $i \neq i$ ; confidence 0.468

288. a01068035.png ; $A _ { i } ( n ) = \sum _ { 1 \leq a _ { i } \leq n } 1$ ; confidence 0.468

289. a110010249.png ; $( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$ ; confidence 0.467

290. a01419058.png ; $\phi ( t ) \equiv$ ; confidence 0.467

291. b13020073.png ; $9 -$ ; confidence 0.467

292. c027180181.png ; $E _ { x } ( s )$ ; confidence 0.467

293. o06837017.png ; $( \alpha b ) \sigma = \alpha \sigma b \sigma$ ; confidence 0.467

294. a110010109.png ; $B N = \operatorname { max } _ { 1 \leq i \leq x } | b _ { i } |$ ; confidence 0.467

295. b01738057.png ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466

296. u09529039.png ; $t \rightarrow t + w z$ ; confidence 0.466

297. a12012094.png ; $y _ { 0 }$ ; confidence 0.466

298. a130050262.png ; $N _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { C } ^ { \# } ( n )$ ; confidence 0.466

299. a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z }$ ; confidence 0.465

300. a12013012.png ; $1 + n$ ; confidence 0.465

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/15. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/15&oldid=43905