Difference between revisions of "User:Richard Pinch/sandbox-13"
(Copy text from Standard construction) |
(Start article: Span) |
||
| Line 1: | Line 1: | ||
| + | =Span= | ||
| + | '''Span''' may refer to | ||
| + | |||
| + | * [[Linear hull]], also called ''linear span'' or ''span'' | ||
| + | * [[Span (category theory)]] | ||
| + | |||
| + | =Span (category theory)= | ||
| + | |||
| + | A [[diagram]] in a [[category]] of the form | ||
| + | $$ | ||
| + | \begin{array}{ccccc} | ||
| + | & & C & & \\ | ||
| + | & f \swarrow & & \searrow g & \\ | ||
| + | A & & & & B | ||
| + | \end{array} | ||
| + | $$ | ||
| + | |||
| + | Two spans with arrows $(f,g)$ and $(f',g')$ are equivalent if for all $D,p,q$ the diagrams | ||
| + | $$ | ||
| + | \begin{array}{ccccc} | ||
| + | & & C & & \\ | ||
| + | & f \swarrow & & \searrow g & \\ | ||
| + | A & & & & B \\ | ||
| + | & p \searrow & & \swarrow q \\ | ||
| + | & & D & & \\ | ||
| + | \end{array} | ||
| + | \ \ \text{and}\ \ | ||
| + | \begin{array}{ccccc} | ||
| + | & & C & & \\ | ||
| + | & f' \swarrow & & \searrow g' & \\ | ||
| + | A & & & & B \\ | ||
| + | & p \searrow & & \swarrow q \\ | ||
| + | & & D & & \\ | ||
| + | \end{array} | ||
| + | $$ | ||
| + | either both commute or both do not commute. | ||
| + | |||
| + | A [[pushout]] is the [[colimit]] of a span. | ||
| + | |||
| + | ====References==== | ||
| + | <table> | ||
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician" , Springer (1971). ISBN 0-387-90036-5</TD></TR> | ||
| + | </table> | ||
| + | |||
| + | |||
=Standard construction= | =Standard construction= | ||
A concept in [[category theory]]. Other names are [[triple]], monad and functor-algebra. | A concept in [[category theory]]. Other names are [[triple]], monad and functor-algebra. | ||
Revision as of 08:30, 6 April 2020
Span
Span may refer to
- Linear hull, also called linear span or span
- Span (category theory)
Span (category theory)
A diagram in a category of the form $$ \begin{array}{ccccc} & & C & & \\ & f \swarrow & & \searrow g & \\ A & & & & B \end{array} $$
Two spans with arrows $(f,g)$ and $(f',g')$ are equivalent if for all $D,p,q$ the diagrams $$ \begin{array}{ccccc} & & C & & \\ & f \swarrow & & \searrow g & \\ A & & & & B \\ & p \searrow & & \swarrow q \\ & & D & & \\ \end{array} \ \ \text{and}\ \ \begin{array}{ccccc} & & C & & \\ & f' \swarrow & & \searrow g' & \\ A & & & & B \\ & p \searrow & & \swarrow q \\ & & D & & \\ \end{array} $$ either both commute or both do not commute.
A pushout is the colimit of a span.
References
| [1] | S. MacLane, "Categories for the working mathematician" , Springer (1971). ISBN 0-387-90036-5 |
Standard construction
A concept in category theory. Other names are triple, monad and functor-algebra.
Let $\mathfrak{S}$ be a category. A standard construction is a functor $T:\mathfrak{S} \rightarrow \mathfrak{S}$ equipped with natural transformations $\eta:1\rightarrow T$ and $\mu:T^2\rightarrow T$ such that the following diagrams commute: $$ \begin{array}{ccc} T^3 Y & \stackrel{T\mu_Y}{\rightarrow} & T^2 Y \\ \mu_{TY}\downarrow& & \downarrow_Y \\ T^2 & \stackrel{T_y}{\rightarrow} & Y \end{array} $$ $$ \begin{array}{ccccc} TY & \stackrel{TY}{\rightarrow} & T^2Y & \stackrel{T_{\eta Y}}{\leftarrow} & TY \\ & 1\searrow & \downarrow\mu Y & \swarrow1 & \\ & & Y & & \\ \end{array} $$
The basic use of standard constructions in topology is in the construction of various classifying spaces and their algebraic analogues, the so-called bar-constructions.
References
| [1] | J.M. Boardman, R.M. Vogt, "Homotopy invariant algebraic structures on topological spaces" , Springer (1973) |
| [2] | J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978) |
| [3] | J.P. May, "The geometry of iterated loop spaces" , Lect. notes in math. , 271 , Springer (1972) |
| [4] | S. MacLane, "Categories for the working mathematician" , Springer (1971) |
Comments
The term "standard construction" was introduced by R. Godement [a1] for want of a better name for this concept. It is now entirely obsolete, having been generally superseded by "monad" (although a minority of authors still use the term "triple" ). Monads have many other uses besides the one mentioned above, for example in the categorical approach to universal algebra (see [a2], [a3]).
References
| [a1] | R. Godement, "Théorie des faisceaux" , Hermann (1958) |
| [a2] | E.G. Manes, "Algebraic theories" , Springer (1976) |
| [a3] | M. Barr, C. Wells, "Toposes, triples and theories" , Springer (1985) |
Richard Pinch/sandbox-13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-13&oldid=42952