Namespaces
Variants
Actions

Difference between revisions of "Allison-Hein triple system"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
m (link)
Line 1: Line 1:
The concept of a triple system, i.e. a [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302001.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302002.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302003.png" />-[[trilinear mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302004.png" />, is mainly used in the theory of non-associative algebras and appears in the construction of Lie algebras (cf. also [[Lie algebra|Lie algebra]]; [[Non-associative rings and algebras|Non-associative rings and algebras]]).
+
The concept of a [[triple system]], i.e. a [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302001.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302002.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302003.png" />-[[trilinear mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302004.png" />, is mainly used in the theory of non-associative algebras and appears in the construction of Lie algebras (cf. also [[Lie algebra|Lie algebra]]; [[Non-associative rings and algebras|Non-associative rings and algebras]]).
  
 
A [[Module|module]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302005.png" /> over a field of characteristic not equal to two or three together with a trilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302006.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302007.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302008.png" /> is said to be an Allison–Hein triple system (or a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020010.png" />-ternary algebra) if
 
A [[Module|module]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302005.png" /> over a field of characteristic not equal to two or three together with a trilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302006.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302007.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302008.png" /> is said to be an Allison–Hein triple system (or a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020010.png" />-ternary algebra) if

Revision as of 18:11, 19 March 2018

The concept of a triple system, i.e. a vector space over a field together with a -trilinear mapping , is mainly used in the theory of non-associative algebras and appears in the construction of Lie algebras (cf. also Lie algebra; Non-associative rings and algebras).

A module over a field of characteristic not equal to two or three together with a trilinear mapping from to is said to be an Allison–Hein triple system (or a -ternary algebra) if

(a1)
(a2)

for all .

From the identities (a1) and (a2) one deduces the relation

where . Hence this triple system may be regarded as a variation of a Freudenthal–Kantor triple system. In particular, it is important that the linear span of the set is a Jordan subalgebra (cf. also Jordan algebra) of with respect to .

References

[a1] B.N. Allison, "A construction of Lie algebras from -ternary algebras" Amer. J. Math. , 98 (1976) pp. 285–294
[a2] W. Hein, "A construction of Lie algebras by triple systems" Trans. Amer. Math. Soc. , 205 (1975) pp. 79–95
[a3] N. Kamiya, "A structure theory of Freudenthal–Kantor triple systems II" Commun. Math. Univ. Sancti Pauli , 38 (1989) pp. 41–60
[a4] K. Yamaguti, "On the metasymplectic geometry and triple systems" Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ. , 306 (1977) pp. 55–92 (In Japanese)
How to Cite This Entry:
Allison-Hein triple system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Allison-Hein_triple_system&oldid=41899
This article was adapted from an original article by Noriaki Kamiya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article