Namespaces
Variants
Actions

Difference between revisions of "Sierpinski space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: expand bibliodata)
(also: connected colon)
Line 1: Line 1:
 +
''connected colon''
 +
 
The Sierpinski space is a particular [[topological space]].  It consists of the set $\{a,b\}$ with open sets $\{ \emptyset, \{a\}, \{a,b\} \}$.   
 
The Sierpinski space is a particular [[topological space]].  It consists of the set $\{a,b\}$ with open sets $\{ \emptyset, \{a\}, \{a,b\} \}$.   
  
 
====References====
 
====References====
 
* Steen, Lynn Arthur; Seebach, J.Arthur jun. ''Counterexamples in topology'' (2nd ed.) Springer (1978) ISBN 0-387-90312-7 {{ZBL|0386.54001}}
 
* Steen, Lynn Arthur; Seebach, J.Arthur jun. ''Counterexamples in topology'' (2nd ed.) Springer (1978) ISBN 0-387-90312-7 {{ZBL|0386.54001}}

Revision as of 14:32, 2 January 2016

connected colon

The Sierpinski space is a particular topological space. It consists of the set $\{a,b\}$ with open sets $\{ \emptyset, \{a\}, \{a,b\} \}$.

References

  • Steen, Lynn Arthur; Seebach, J.Arthur jun. Counterexamples in topology (2nd ed.) Springer (1978) ISBN 0-387-90312-7 Zbl 0386.54001
How to Cite This Entry:
Sierpinski space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sierpinski_space&oldid=37264