Namespaces
Variants
Actions

Difference between revisions of "User:Whayes43"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 1: Line 1:
In his 1990 lecture to the International Congress of Mathematicians in Paris, David Hilbert presented a list of open problems in mathematics. He expressed the 2nd of these problems, known variously as the ''compatibility of the arithmetical axioms'' and the ''consistency of arithmetic,'' as follows:
+
A system of five axioms for the set of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718801.png" /> and a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718802.png" /> (successor) on it, introduced by G. Peano (1889):
  
::When we are engaged in investigating the foundations of a science, we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science. The axioms so set up are at the same time the definitions of those elementary ideas; and no statement within the realm of the science whose foundation we are testing is held to be correct unless it can be derived from those axioms by means of a finite number of logical steps. Upon closer consideration the question arises: ''Whether, in any way, certain statements of single axioms depend upon one another, and whether the axioms may not therefore contain certain parts in common, which must be isolated if one wishes to arrive at a system of axioms that shall be altogether independent of one another.''
+
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718803.png" />;
  
::But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: ''To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results.''
+
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718804.png" />;
  
This problem is said by some to have been solved, albeit in a negative sense, by K. Gödel (see [[Hilbert problems]] and [[Gödel incompleteness theorem]]).
+
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718805.png" />;
  
And yet, in his 2000 Distinguished Lecture to the Carnegie Mellon University School of Computer Science, Gregory Chaitin began his remarks as follows:
+
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718806.png" />;
  
::I’d like to make the outrageous claim, that has a little bit of truth, that actually all of this that’s happening now with the computer taking over the world, the digitalization of our society, of information in human society, you could say in a way is the result of a philosophical question that was raised by David Hilbert at the beginning of the century.
+
5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718807.png" /> for any property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718808.png" /> (axiom of induction).
  
The philosophical question to which Chaitin was referring is the surmise at the heart of Hilbert’s 2nd problem.
+
In the first version 1 was used instead of 0. Similar axioms were proposed by R. Dedekind (1888). Peano's axioms are categorical, that is, any two systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718809.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188010.png" /> satisfying them are isomorphic. The isomorphism is determined by a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188011.png" />, where
  
Chaitin titled his lecture “A Century of Controversy Over the Foundations of Mathematics.” This article presents a brief history of this ongoing controversy.
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188012.png" /></td> </tr></table>
  
==References==
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188013.png" /></td> </tr></table>
  
* [[Hilbert problems]], ''Encyclopedia of Mathematics''.
+
The existence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188014.png" /> for all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188015.png" /> and the mutual single-valuedness for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188016.png" /> are proved by induction. Peano's axioms make it possible to develop number theory; in particular, to introduce the usual arithmetic functions and to establish their properties. All the axioms are independent, but
  
* Hilbert, D. "Mathematische Probleme" Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten) , 3 (1900) pp. 253–297 (Reprint: Archiv Math. Physik 3:1 (1901), 44-63; 213-237; also: Gesammelte Abh., dritter Band, Chelsea, 1965, pp. 290-329) Zbl 31.0068.03, URL: https://www.math.uni-bielefeld.de/~kersten/hilbert/rede.html, Accessed: 2015/06/03.
+
and
  
* Hilbert, D. "Mathematical problems" Bull. Amer. Math. Soc. , 8 (1902) pp. 437–479, MR1557926 Zbl 33.0976.07, URL: http://aleph0.clarku.edu/~djoyce/hilbert/problems.html, Accessed: 2015/06/03.
+
can be combined to a single one:
  
* Chaitin, G, “A Century of Controversy Over the Foundations of Mathematics,“ Journal Complexity -- Special Issue: Limits in mathematics and physics, Volume 5, Issue 5, May-June 2000, pp. 12-21, (Originally published in ''Finite Versus Infinite: Contributions to an Eternal Dilemma'', Calude, C. S.; Paun, G. (eds.); Springer-Verlag, London, 2000, pp. 75–100), URL: http://www-personal.umich.edu/~twod/sof/assignments/chaitin.pdf Accessed 2015/05/30.
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188017.png" /></td> </tr></table>
 +
 
 +
if one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188018.png" /> as
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188019.png" /></td> </tr></table>
 +
 
 +
The independence is proved by exhibiting a model on which all the axioms are true except one. For
 +
 
 +
such a model is the series of natural numbers beginning with 1; for
 +
 
 +
it is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188022.png" />; for
 +
 
 +
the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188023.png" />; for
 +
 
 +
the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188024.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188025.png" />; for
 +
 
 +
the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188026.png" />.
 +
 
 +
Sometimes one understands by Peano arithmetic the system in the first-order language with the function symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188027.png" />, consisting of the axioms
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188028.png" /></td> </tr></table>
 +
 
 +
defining equalities for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188030.png" />, and the induction scheme
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188031.png" /></td> </tr></table>
 +
 
 +
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188032.png" /> is an arbitrary formula, known as the induction formula (see [[Arithmetic, formal|Arithmetic, formal]]).
 +
 
 +
====References====
 +
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.C. Kleene,  "Introduction to metamathematics" , North-Holland  (1951)</TD></TR></table>
 +
 
 +
 
 +
 
 +
====Comments====
 +
The system of Peano arithmetic mentioned at the end of the article above is no longer categorical (cf. also [[Categoric system of axioms|Categoric system of axioms]]), and gives rise to so-called non-standard models of arithmetic.
 +
 
 +
====References====
 +
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.C. Kennedy,   "Peano. Life and works of Giuseppe Peano" , Reidel  (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.C. Kennedy,  "Selected works of Giuseppe Peano" , Allen &amp; Unwin  (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E. Landau,  "Grundlagen der Analysis" , Akad. Verlagsgesellschaft  (1930)</TD></TR></table>

Revision as of 16:57, 11 June 2015

A system of five axioms for the set of natural numbers and a function (successor) on it, introduced by G. Peano (1889):

1) ;

2) ;

3) ;

4) ;

5) for any property (axiom of induction).

In the first version 1 was used instead of 0. Similar axioms were proposed by R. Dedekind (1888). Peano's axioms are categorical, that is, any two systems and satisfying them are isomorphic. The isomorphism is determined by a function , where

The existence of for all pairs and the mutual single-valuedness for are proved by induction. Peano's axioms make it possible to develop number theory; in particular, to introduce the usual arithmetic functions and to establish their properties. All the axioms are independent, but

and

can be combined to a single one:

if one defines as

The independence is proved by exhibiting a model on which all the axioms are true except one. For

such a model is the series of natural numbers beginning with 1; for

it is the set , where , ; for

the set ; for

the set with ; for

the set .

Sometimes one understands by Peano arithmetic the system in the first-order language with the function symbols , consisting of the axioms

defining equalities for and , and the induction scheme

where is an arbitrary formula, known as the induction formula (see Arithmetic, formal).

References

[1] S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)


Comments

The system of Peano arithmetic mentioned at the end of the article above is no longer categorical (cf. also Categoric system of axioms), and gives rise to so-called non-standard models of arithmetic.

References

[a1] H.C. Kennedy, "Peano. Life and works of Giuseppe Peano" , Reidel (1980)
[a2] H.C. Kennedy, "Selected works of Giuseppe Peano" , Allen & Unwin (1973)
[a3] E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930)
How to Cite This Entry:
Whayes43. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whayes43&oldid=36440