Difference between revisions of "User talk:Nikita2"
From Encyclopedia of Mathematics
(→Weighted Sobolev Spaces: new section) |
|||
Line 1: | Line 1: | ||
== Weighted Sobolev Spaces == | == Weighted Sobolev Spaces == | ||
− | Let $D\subset \mathbb R^n$ be open and let $w:\mathbb R^n\rightarrow[0,\infty)$ be a locally summable nonnegative function "weight". For $1\leqslant p<\infty$ and $l\in\mathbb N$ we can define weighted Sobolev space $W^l_p(D,w)$ as the set of | + | Let $D\subset \mathbb R^n$ be open and let $w:\mathbb R^n\rightarrow[0,\infty)$ be a locally summable nonnegative function "weight". For $1\leqslant p<\infty$ and $l\in\mathbb N$ we can define weighted Sobolev space $W^l_p(D,w)$ as the set of locally summable functions $f:D\to\mathbb R$ such that for every |
− | multi-index $\alpha$ there exists [[ |weak derivative]] $D^{\alpha}f and | + | multi-index $\alpha$ there exists [[Generalized derivative |weak derivative]] $D^{\alpha}f$ and |
\begin{equation} | \begin{equation} |
Revision as of 17:07, 23 November 2012
Weighted Sobolev Spaces
Let $D\subset \mathbb R^n$ be open and let $w:\mathbb R^n\rightarrow[0,\infty)$ be a locally summable nonnegative function "weight". For $1\leqslant p<\infty$ and $l\in\mathbb N$ we can define weighted Sobolev space $W^l_p(D,w)$ as the set of locally summable functions $f:D\to\mathbb R$ such that for every multi-index $\alpha$ there exists weak derivative $D^{\alpha}f$ and
\begin{equation} \|f\mid W^l_p(D, w)\| = \Biggl(\,\sum\limits_{|\alpha|\leqslant l}\ \int\limits_{D}|D^{\alpha}f|^p(x)w(x)\, dx \,\Biggr)^{\frac{1}{p}} < \infty. \end{equation}
How to Cite This Entry:
Nikita2. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nikita2&oldid=28859
Nikita2. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nikita2&oldid=28859