Namespaces
Variants
Actions

Difference between revisions of "User talk:Nikita2"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
Line 1: Line 1:
 
== Weighted Sobolev Spaces ==
 
== Weighted Sobolev Spaces ==
  
Let $D\subset \mathbb R^n$ be open and let $w:\mathbb R^n\rightarrow[0,\infty)$ be a locally summable nonnegative function "weight". For $1\leqslant p<\infty$ and $l\in\mathbb N$ we can define weighted Sobolev space $W^l_p(D,w)$ as the set of measurable functions $f:D\to\mathbb R$ such that for every
+
Let $D\subset \mathbb R^n$ be open and let $w:\mathbb R^n\rightarrow[0,\infty)$ be a locally summable nonnegative function "weight". For $1\leqslant p<\infty$ and $l\in\mathbb N$ we can define weighted Sobolev space $W^l_p(D,w)$ as the set of locally summable functions $f:D\to\mathbb R$ such that for every
multi-index $\alpha$ there exists [[ |weak derivative]] $D^{\alpha}f and
+
multi-index $\alpha$ there exists [[Generalized derivative |weak derivative]] $D^{\alpha}f$ and
  
 
\begin{equation}
 
\begin{equation}

Revision as of 17:07, 23 November 2012

Weighted Sobolev Spaces

Let $D\subset \mathbb R^n$ be open and let $w:\mathbb R^n\rightarrow[0,\infty)$ be a locally summable nonnegative function "weight". For $1\leqslant p<\infty$ and $l\in\mathbb N$ we can define weighted Sobolev space $W^l_p(D,w)$ as the set of locally summable functions $f:D\to\mathbb R$ such that for every multi-index $\alpha$ there exists weak derivative $D^{\alpha}f$ and

\begin{equation} \|f\mid W^l_p(D, w)\| = \Biggl(\,\sum\limits_{|\alpha|\leqslant l}\ \int\limits_{D}|D^{\alpha}f|^p(x)w(x)\, dx \,\Biggr)^{\frac{1}{p}} < \infty. \end{equation}

How to Cite This Entry:
Nikita2. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nikita2&oldid=28859