Difference between revisions of "User:Matteo.focardi/sandbox"
Line 1: | Line 1: | ||
+ | |||
Line 11: | Line 12: | ||
− | A formula aimed at expressing the determinant of | + | A formula aimed at expressing the determinant of the product of two matrices $A\in\mathrm{M}_{m,n}(\mathbb{R})$ |
− | product of $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of | + | and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors |
− | the sum of the products of all possible higher order minors of $A$ with corresponding minors of | + | of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$ |
− | the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$ denotes any | + | denotes any [[Multiindex|multi-index]] $(k_1,\ldots,k_m)$ with $1\leq k_1<\ldots<k_m\leq n$ of length $m$, then |
− | [[Multiindex|multi-index]] $(k_1,\ldots,k_m)$ with $1\leq k_1<\ldots<k_m\leq n$ of length $m$, then | ||
\[ | \[ | ||
− | \det | + | \det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha}, |
\] | \] | ||
where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$. | where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$. | ||
Line 24: | Line 24: | ||
If $n=m$ the formula reduces to | If $n=m$ the formula reduces to | ||
\[ | \[ | ||
− | \det | + | \det (AB)=\det A\,\det B. |
\] | \] | ||
A number of interesting consequence of Cauchy-Binet formula is listed below. | A number of interesting consequence of Cauchy-Binet formula is listed below. | ||
Line 32: | Line 32: | ||
\mathrm{rank}C\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}. | \mathrm{rank}C\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}. | ||
\] | \] | ||
− | Moreover, if $m=2$ | + | Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors, |
+ | by taking | ||
$$A=\begin{pmatrix} | $$A=\begin{pmatrix} | ||
a_{1}&\dots&a_{n}\\ | a_{1}&\dots&a_{n}\\ | ||
Line 44: | Line 45: | ||
\end{pmatrix} | \end{pmatrix} | ||
$$ | $$ | ||
− | + | by Cauchy-Binet | |
\[ | \[ | ||
\sum_{1\leq i<j\leq n}\begin{pmatrix} | \sum_{1\leq i<j\leq n}\begin{pmatrix} | ||
Line 52: | Line 53: | ||
\begin{pmatrix} | \begin{pmatrix} | ||
\|\mathbf{a}\|^2&\mathbf{a}\cdot \mathbf{b}\\ | \|\mathbf{a}\|^2&\mathbf{a}\cdot \mathbf{b}\\ | ||
− | \mathbf{a}\cdot \mathbf{b}&\|\mathbf{b}\|^2\\ | + | \mathbf{a}\cdot \mathbf{b}&\|\mathbf{b}\|^2,\\ |
\end{pmatrix} | \end{pmatrix} | ||
\] | \] | ||
in turn implying Cauchy-Schwartz inequality. | in turn implying Cauchy-Schwartz inequality. | ||
+ | |||
+ | If $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,q}(\mathbb{R})$, | ||
+ | and $N\leq\min\{m,q\}$ then any minor of order $N$ of the product matrix $C=AB$ |
Revision as of 14:35, 23 November 2012
2020 Mathematics Subject Classification: Primary: 15Axx [MSN][ZBL]
A formula aimed at expressing the determinant of the product of two matrices $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$ denotes any multi-index $(k_1,\ldots,k_m)$ with $1\leq k_1<\ldots<k_m\leq n$ of length $m$, then \[ \det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha}, \] where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$. In case $m>n$, no such $\beta$ exists and the right-hand side above is set to be $0$ by definition.
If $n=m$ the formula reduces to \[ \det (AB)=\det A\,\det B. \] A number of interesting consequence of Cauchy-Binet formula is listed below. First of all, an inequality for the rank of the product matrix $C$ follows straightforwardly , i.e., \[ \mathrm{rank}C\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}. \] Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors, by taking $$A=\begin{pmatrix} a_{1}&\dots&a_{n}\\ b_{1}&\dots&b_{n}\\ \end{pmatrix} \quad\text{and}\quad B=\begin{pmatrix} a_{1}&b_{1}\\ \dots&\dots\\ a_{n}&b_{n}\\ \end{pmatrix} $$ by Cauchy-Binet \[ \sum_{1\leq i<j\leq n}\begin{pmatrix} a_{i}&a_{j}\\ b_{i}&b_{j}\\ \end{pmatrix}^2= \begin{pmatrix} \|\mathbf{a}\|^2&\mathbf{a}\cdot \mathbf{b}\\ \mathbf{a}\cdot \mathbf{b}&\|\mathbf{b}\|^2,\\ \end{pmatrix} \] in turn implying Cauchy-Schwartz inequality.
If $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,q}(\mathbb{R})$, and $N\leq\min\{m,q\}$ then any minor of order $N$ of the product matrix $C=AB$
Matteo.focardi/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matteo.focardi/sandbox&oldid=28826