Difference between revisions of "Kernel of an integral operator"
From Encyclopedia of Mathematics
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
(TeX) |
||
Line 1: | Line 1: | ||
− | A function | + | {{TEX|done}} |
+ | A function $K(x,y)$ in two variables that defines an [[Integral operator|integral operator]] $A$ by the equality | ||
− | + | $$\psi(y)=A[\phi(x)]=\int K(x,y)\phi(x)d\mu(x),$$ | |
− | where | + | where $x$ ranges over a [[Measure space|measure space]] $(X,d\mu)$ and $\phi$ belongs to a certain space of functions defined on $X$. |
Line 11: | Line 12: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981) {{MR|0632943}} {{ZBL|0458.47001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Halmos, V.S. Sunder, "Bounded integral operators on | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981) {{MR|0632943}} {{ZBL|0458.47001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Halmos, V.S. Sunder, "Bounded integral operators on $L^2$ spaces" , Springer (1978) {{MR|517709}} {{ZBL|0389.47001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Jörgens, "Lineare Integraloperatoren" , Teubner (1970) {{MR|0461049}} {{ZBL|0207.44602}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''4''' , Addison-Wesley (1964) (Translated from Russian) {{MR|0182690}} {{MR|0182688}} {{MR|0182687}} {{MR|0177069}} {{MR|0168707}} {{ZBL|0122.29703}} {{ZBL|0121.25904}} {{ZBL|0118.28402}} {{ZBL|0117.03404}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) (Translated from Russian) {{MR|}} {{ZBL|}} </TD></TR></table> |
Revision as of 14:04, 17 April 2014
A function $K(x,y)$ in two variables that defines an integral operator $A$ by the equality
$$\psi(y)=A[\phi(x)]=\int K(x,y)\phi(x)d\mu(x),$$
where $x$ ranges over a measure space $(X,d\mu)$ and $\phi$ belongs to a certain space of functions defined on $X$.
Comments
References
[a1] | I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981) MR0632943 Zbl 0458.47001 |
[a2] | P.R. Halmos, V.S. Sunder, "Bounded integral operators on $L^2$ spaces" , Springer (1978) MR517709 Zbl 0389.47001 |
[a3] | K. Jörgens, "Lineare Integraloperatoren" , Teubner (1970) MR0461049 Zbl 0207.44602 |
[a4] | V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian) MR0182690 MR0182688 MR0182687 MR0177069 MR0168707 Zbl 0122.29703 Zbl 0121.25904 Zbl 0118.28402 Zbl 0117.03404 |
[a5] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian) |
How to Cite This Entry:
Kernel of an integral operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kernel_of_an_integral_operator&oldid=28227
Kernel of an integral operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kernel_of_an_integral_operator&oldid=28227
This article was adapted from an original article by G.L. Litvinov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article