|
|
| Line 3: |
Line 3: |
| | [[Category:Classical measure theory]] | | [[Category:Classical measure theory]] |
| | | | |
| − | {{TEX|want}} | + | {{TEX|done}} |
| | | | |
| − | A concept in measure theory, determined by a certain topology in a space of measures that are defined on a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261401.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261402.png" /> of subsets of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261403.png" /> or, more generally, in a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261404.png" /> of charges, i.e. countably-additive real or complex functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261405.png" />, defined on sets from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261406.png" />. The following are the most commonly used topologies in the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261407.png" /> consisting of bounded charges, i.e. charges for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261408.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c0261409.png" />. | + | A concept in measure theory, determined by a certain topology in a space of measures that are defined on a certain $\sigma$-algebra $\mathcal{B}$ of subsets of a space $X$ or, more generally, in a space $\mathcal{M} (X, \mathcal{B})$ of charges, i.e. countably-additive real (resp. complex) functions $\mu: \mathcal{B}\mapsto \mathbb R$ (resp. $\mathbb C$), often called |
| | + | also $\mathbb R$(resp. $\mathbb C$)-valued or signed measures. |
| | + | The total variation measure of a $\mathbb C$-valued measure is defined on $\mathcal{B}$ as: |
| | + | \[ |
| | + | |\mu| (B) :=\sup\, \left\{ \sum |\mu (B_i)|: \{B_i\}\subset |
| | + | \mathcal{B} \mbox{ is a countable partition of $B$}\right\}\, . |
| | + | \] |
| | + | In the real-valued case the above definition simplies as |
| | + | \[ |
| | + | |\mu| (B) = \sup_{A\in \mathcal{B}, A\subset B}\, \left(|\mu (A)| + |\mu (X\setminus B)|\right)\, . |
| | + | \] |
| | + | The total variation of $\mu$ is then defined as $\|\mu\|_v := |
| | + | |\mu| (X)$. |
| | + | The space $\mathcal{M}^b (X, \mathcal{B})$ of $\mathbb R$(resp. |
| | + | $\mathbb C$)-valued measure with finite total variation is a [[Banach space]] and the following are the most commonly used topologies. |
| | | | |
| − | 1) In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614010.png" /> the norm | + | 1) The norm or [[strong topology]]: $\mu_n\to \mu$ if and only |
| | + | if $\|\mu_n-\mu\|_v\to 0$. |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614011.png" /></td> </tr></table>
| + | 2) The [[weak topology]]: a sequence of measures $\mu_n \rightharpoonup \mu$ if and only if $F (\mu_n)\to F(\mu)$ |
| | + | for every bounded linear functional $F$ on $\mathcal{M}^b$. |
| | | | |
| − | called the variation of the charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614012.png" />, is introduced. The convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614014.png" />, to a charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614015.png" /> in this norm is called convergence in variation.
| + | 3) When $X$ is a [[topological space]] and $\mathcal{B}$ the |
| | + | corresponding $\sigma$-algebra of [[Borel set|Borel sets]], |
| | + | we can introduce on $X$ the narrow topology. In this case $\mu_n$ converges to $\mu$ |
| | + | if and only if |
| | + | \begin{equation}\label{e:narrow} |
| | + | \int f\, d\mu_n \to \int f\, d\mu |
| | + | \end{equation} |
| | + | for every bounded continuous function $f:X\to \mathbb R$(resp. $\mathbb C$). |
| | + | This topology is also called sometimes weak topology, however |
| | + | such notation is inconsistent with the Banach space theory, |
| | + | see below. |
| | + | The following is an important consequence of the narrow convergence: if $\mu_n$ converges narrowly to $\mu$, then |
| | + | $\mu_n (A)\to \mu (A)$ for any Borel set such that $|\mu| (\partial A)=0$. |
| | | | |
| − | 2) In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614016.png" /> the ordinary weak topology is examined: Convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614018.png" />, in this topology (weak convergence) means that for any continuous linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614019.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614022.png" />. This convergence is equivalent to the fact that the sequence of charges is bounded, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614023.png" />, and that for any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614024.png" /> the sequence of values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614026.png" />. Weak convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614028.png" /> implies convergence of the integrals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614030.png" />, for any bounded function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614032.png" /> that is measurable with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614033.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614034.png" />.
| + | 4) When $X$ is a locally compact topological space and $\mathcal{B}$ |
| | + | the $\sigma$-algebra of Borel sets yet another topology can be introduced, the so-called wide topology, or sometimes referred to |
| | + | as [[weak-star topology|weak$^\star$ topology]]. A sequence |
| | + | $\mu_n\rightharpoonup^\star \mu$ if and only if \eqref{e:narrow} holds |
| | + | for continuous functions which are compactly supported. |
| | | | |
| − | 3) When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614035.png" /> is a topological space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614036.png" /> is its Borel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614037.png" />-algebra, a topology is examined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614038.png" /> which is also called the weak topology (or sometimes the narrow topology). It is defined as the weakest of the topologies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614039.png" /> relative to which all functionals of the form
| + | This topology is in general weaker than the narrow topology. |
| | + | If $X$ is compact |
| | + | and Hausdorff the [[Riesz representation theorem]] shows that |
| | + | $\mathcal{M}^b$ is the dual of the space $C(X)$ of continuous |
| | + | functions. Under this assumption the narrow and weak$^\star$ topology |
| | + | coincide with the usual [[weak-star topology|weak$^\star$ topology]] |
| | + | of the Banach space theory. Since in general $C(X)$ is not |
| | + | a reflexive space, it turns out that the narrow topology is in general weaker than the weak topology. |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614040.png" /></td> </tr></table>
| + | A topology analogous to the weak$^\star$ topology is defined |
| | + | in the more general space $\mathcal{M}^b_{loc}$ of locally bounded |
| | + | measures, i.e. those measures $\mu$ such that for any point $x\in X$ |
| | + | there is a neighborhood $U$ with $|\mu| (U)<\infty$. |
| | | | |
| − | are continuous, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614041.png" /> is an arbitrary bounded continuous function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614042.png" />. This topology is weaker than the previous one, and convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614044.png" />, relative to it (weak or narrow convergence) is equivalent to the convergence of the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614046.png" />, for any Borel set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614047.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614048.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614049.png" /> and the operation of closure of a set is denoted by the bar.
| + | http://www.encyclopediaofmath.org/index.php/Convergence_of_measures |
| − | | |
| − | 4) When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614050.png" /> is a locally compact topological space (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614051.png" /> is a Borel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614052.png" />-algebra) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614053.png" /> the so-called wide topology is examined: the convergence of a sequence of charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614055.png" /> (wide convergence), means convergence of the functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614057.png" />, for any continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614058.png" /> with compact support. This topology is weaker than the weak topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614059.png" />. An analogous topology is defined naturally in the wider space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614060.png" /> of locally bounded charges <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614061.png" />, i.e. charges such that for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614062.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614063.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026140/c02614066.png" />.
| |
| | | | |
| | ====References==== | | ====References==== |
| | {| | | {| |
| | + | |- |
| | + | |valign="top"|{{Ref|AmFuPa}}|| L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". |
| | + | Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. {{MR|1857292}}{{ZBL|0957.49001} |
| | + | |- |
| | |valign="top"|{{Ref|Bo}}|| N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}} {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}} {{ZBL|1095.28001}} {{ZBL|0156.06001}} | | |valign="top"|{{Ref|Bo}}|| N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}} {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}} {{ZBL|1095.28001}} {{ZBL|0156.06001}} |
| | |- | | |- |
| − | |valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}} {{ZBL|}} | + | |valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}} |
| | |- | | |- |
| | |valign="top"|{{Ref|Bi}}|| P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}} | | |valign="top"|{{Ref|Bi}}|| P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}} |
| | + | |- |
| | + | |valign="top"|{{Ref|Ma}}|| P. Mattila, "Geometry of sets and measures in euclidean spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. {{MR|1333890}} {{ZBL|0911.28005}} |
| | + | |- |
| | |} | | |} |
2020 Mathematics Subject Classification: Primary: 28A33 [MSN][ZBL]
A concept in measure theory, determined by a certain topology in a space of measures that are defined on a certain $\sigma$-algebra $\mathcal{B}$ of subsets of a space $X$ or, more generally, in a space $\mathcal{M} (X, \mathcal{B})$ of charges, i.e. countably-additive real (resp. complex) functions $\mu: \mathcal{B}\mapsto \mathbb R$ (resp. $\mathbb C$), often called
also $\mathbb R$(resp. $\mathbb C$)-valued or signed measures.
The total variation measure of a $\mathbb C$-valued measure is defined on $\mathcal{B}$ as:
\[
|\mu| (B) :=\sup\, \left\{ \sum |\mu (B_i)|: \{B_i\}\subset
\mathcal{B} \mbox{ is a countable partition of '"`UNIQ-MathJax11-QINU`"'}\right\}\, .
\]
In the real-valued case the above definition simplies as
\[
|\mu| (B) = \sup_{A\in \mathcal{B}, A\subset B}\, \left(|\mu (A)| + |\mu (X\setminus B)|\right)\, .
\]
The total variation of $\mu$ is then defined as $\|\mu\|_v :=
|\mu| (X)$.
The space $\mathcal{M}^b (X, \mathcal{B})$ of $\mathbb R$(resp.
$\mathbb C$)-valued measure with finite total variation is a Banach space and the following are the most commonly used topologies.
1) The norm or strong topology: $\mu_n\to \mu$ if and only
if $\|\mu_n-\mu\|_v\to 0$.
2) The weak topology: a sequence of measures $\mu_n \rightharpoonup \mu$ if and only if $F (\mu_n)\to F(\mu)$
for every bounded linear functional $F$ on $\mathcal{M}^b$.
3) When $X$ is a topological space and $\mathcal{B}$ the
corresponding $\sigma$-algebra of Borel sets,
we can introduce on $X$ the narrow topology. In this case $\mu_n$ converges to $\mu$
if and only if
\begin{equation}\label{e:narrow}
\int f\, d\mu_n \to \int f\, d\mu
\end{equation}
for every bounded continuous function $f:X\to \mathbb R$(resp. $\mathbb C$).
This topology is also called sometimes weak topology, however
such notation is inconsistent with the Banach space theory,
see below.
The following is an important consequence of the narrow convergence: if $\mu_n$ converges narrowly to $\mu$, then
$\mu_n (A)\to \mu (A)$ for any Borel set such that $|\mu| (\partial A)=0$.
4) When $X$ is a locally compact topological space and $\mathcal{B}$
the $\sigma$-algebra of Borel sets yet another topology can be introduced, the so-called wide topology, or sometimes referred to
as weak$^\star$ topology. A sequence
$\mu_n\rightharpoonup^\star \mu$ if and only if \eqref{e:narrow} holds
for continuous functions which are compactly supported.
This topology is in general weaker than the narrow topology.
If $X$ is compact
and Hausdorff the Riesz representation theorem shows that
$\mathcal{M}^b$ is the dual of the space $C(X)$ of continuous
functions. Under this assumption the narrow and weak$^\star$ topology
coincide with the usual weak$^\star$ topology
of the Banach space theory. Since in general $C(X)$ is not
a reflexive space, it turns out that the narrow topology is in general weaker than the weak topology.
A topology analogous to the weak$^\star$ topology is defined
in the more general space $\mathcal{M}^b_{loc}$ of locally bounded
measures, i.e. those measures $\mu$ such that for any point $x\in X$
there is a neighborhood $U$ with $|\mu| (U)<\infty$.
http://www.encyclopediaofmath.org/index.php/Convergence_of_measures
References
| [AmFuPa] |
L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems".
Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292{{ZBL|0957.49001}
|
| [Bo] |
N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001
|
| [DS] |
N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523
|
| [Bi] |
P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201
|
| [Ma] |
P. Mattila, "Geometry of sets and measures in euclidean spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005
|