Difference between revisions of "Lacunary sequence"
(MSC refined) |
Ulf Rehmann (talk | contribs) m (mr,zbl,def style) |
||
Line 7: | Line 7: | ||
$ | $ | ||
− | + | The Lacunary sequence is | |
+ | a sequence of numbers $\seq{n_k}$ such that $n_{k+1} / n_k \geq \lambda > 1$; this class of sequences is denoted by $\Lambda$ and is used, in particular, in the theory of [[Lacunary series|lacunary series]] and in the theory of [[Lacunary trigonometric series|lacunary trigonometric series]]. There are generalizations of the class $\Lambda$. For example, the class $B_2$: $\seq{n_k} \in B_2$ if there is an $A$ such that the number of solutions of the equations $[n_{k_1} \pm n_{k_2}] = m$ (where $n_{k_1} > n_{k_2}$ and $[a]$ is the integer part of the number $a$) does not exceed $A$ for any integer $m$; the class $R$: $\seq{n_k} \in R$ if there is an $A$ such that the number of solutions of the equations $[n_{k_1} \pm \cdots \pm n_{k_p}] = m$ (where $n_{k_1} > \cdots > n_{k_p}$) does not exceed $A^p$ for any $p=2,3,\ldots$ and any integer $m$; and the classes $\Lambda_\sigma$, $B_{2\sigma}$, $R_\sigma$, consisting of sequences that split into finitely-many sequences of the classes $\Lambda$, $B_2$, $R$, respectively. | ||
====References==== | ====References==== | ||
Line 13: | Line 14: | ||
{| | {| | ||
|- | |- | ||
− | |valign="top"|{{Ref|Ba}}||valign="top"| N.K. [N.K. Bari] Bary, "A treatise on trigonometric series", Pergamon (1964) (Translated from Russian) | + | |valign="top"|{{Ref|Ba}}||valign="top"| N.K. [N.K. Bari] Bary, "A treatise on trigonometric series", Pergamon (1964) (Translated from Russian) {{MR|0171116}} {{ZBL|0129.28002}} |
|- | |- | ||
|} | |} |
Latest revision as of 08:26, 4 May 2012
2020 Mathematics Subject Classification: Primary: 11B05 Secondary: 42A55 [MSN][ZBL]
$ \newcommand{\seq}[1]{\left(#1\right)} % \newcommand{\seq}[1]{\left\{#1\right\}} $
The Lacunary sequence is a sequence of numbers $\seq{n_k}$ such that $n_{k+1} / n_k \geq \lambda > 1$; this class of sequences is denoted by $\Lambda$ and is used, in particular, in the theory of lacunary series and in the theory of lacunary trigonometric series. There are generalizations of the class $\Lambda$. For example, the class $B_2$: $\seq{n_k} \in B_2$ if there is an $A$ such that the number of solutions of the equations $[n_{k_1} \pm n_{k_2}] = m$ (where $n_{k_1} > n_{k_2}$ and $[a]$ is the integer part of the number $a$) does not exceed $A$ for any integer $m$; the class $R$: $\seq{n_k} \in R$ if there is an $A$ such that the number of solutions of the equations $[n_{k_1} \pm \cdots \pm n_{k_p}] = m$ (where $n_{k_1} > \cdots > n_{k_p}$) does not exceed $A^p$ for any $p=2,3,\ldots$ and any integer $m$; and the classes $\Lambda_\sigma$, $B_{2\sigma}$, $R_\sigma$, consisting of sequences that split into finitely-many sequences of the classes $\Lambda$, $B_2$, $R$, respectively.
References
[Ba] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series", Pergamon (1964) (Translated from Russian) MR0171116 Zbl 0129.28002 |
Lacunary sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lacunary_sequence&oldid=25913