Namespaces
Variants
Actions

Difference between revisions of "Baire set"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
(refs format)
Line 8: Line 8:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}} </TD></TR></table>
+
{|
 +
|valign="top"|{{Ref|H}}|| P.R. Halmos, "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}}
 +
|}

Revision as of 19:57, 10 May 2012

in a locally compact Hausdorff space

2020 Mathematics Subject Classification: Primary: 28A05 Secondary: 03E1554H05 [MSN][ZBL]

A set belonging to the -ring generated by the class of all compact sets in that are -sets. A Baire set serves to define the concept of a Baire-measurable function. In all classical particular cases in which measure theory is developed in topological spaces, e.g. in Euclidean spaces, the concept of a Baire set coincides with that of a Borel set.

References

[H] P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802
How to Cite This Entry:
Baire set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Baire_set&oldid=23578
This article was adapted from an original article by V.A. Skvortsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article