Namespaces
Variants
Actions

Difference between revisions of "Prüfer surface"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Pruefer surface to Prüfer surface over redirect: accented title)
(+ {{TEX|done}})
Line 1: Line 1:
 +
{{TEX|done}}
 
An example of a two-dimensional real-analytic manifold (cf. also [[Analytic manifold|Analytic manifold]]) not having a countable basis of open sets. It was introduced in a paper of T. Radó [[#References|[1]]]. There is a generalization of the Prüfer surface to any even dimension (cf. [[#References|[2]]]). However, every [[Riemann surface|Riemann surface]] has a countable basis of open sets (Radó's theorem).
 
An example of a two-dimensional real-analytic manifold (cf. also [[Analytic manifold|Analytic manifold]]) not having a countable basis of open sets. It was introduced in a paper of T. Radó [[#References|[1]]]. There is a generalization of the Prüfer surface to any even dimension (cf. [[#References|[2]]]). However, every [[Riemann surface|Riemann surface]] has a countable basis of open sets (Radó's theorem).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T. Radó,  "Ueber den Begriff der Riemannschen Flächen"  ''Acta Szeged'' , '''2'''  (1925)  pp. 101–121</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Calabi,  M. Rosenlicht,  "Complex analytic manifolds without countable base"  ''Proc. Amer. Math. Soc.'' , '''4'''  (1953)  pp. 335–340</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Springer,  "Introduction to Riemann surfaces" , Addison-Wesley  (1957)  pp. Chapt.10</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Nevanlinna,  "Uniformisierung" , Springer  (1953)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T. Radó,  "Ueber den Begriff der Riemannschen Flächen"  ''Acta Szeged'' , '''2'''  (1925)  pp. 101–121</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Calabi,  M. Rosenlicht,  "Complex analytic manifolds without countable base"  ''Proc. Amer. Math. Soc.'' , '''4'''  (1953)  pp. 335–340</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Springer,  "Introduction to Riemann surfaces" , Addison-Wesley  (1957)  pp. Chapt.10</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Nevanlinna,  "Uniformisierung" , Springer  (1953)</TD></TR></table>

Revision as of 11:58, 29 June 2014

An example of a two-dimensional real-analytic manifold (cf. also Analytic manifold) not having a countable basis of open sets. It was introduced in a paper of T. Radó [1]. There is a generalization of the Prüfer surface to any even dimension (cf. [2]). However, every Riemann surface has a countable basis of open sets (Radó's theorem).

References

[1] T. Radó, "Ueber den Begriff der Riemannschen Flächen" Acta Szeged , 2 (1925) pp. 101–121
[2] E. Calabi, M. Rosenlicht, "Complex analytic manifolds without countable base" Proc. Amer. Math. Soc. , 4 (1953) pp. 335–340
[3] G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10
[4] R. Nevanlinna, "Uniformisierung" , Springer (1953)
How to Cite This Entry:
Prüfer surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pr%C3%BCfer_surface&oldid=23506
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article