Difference between revisions of "Nikodým convergence theorem"
Ulf Rehmann (talk | contribs) m (moved Nikodym convergence theorem to Nikodým convergence theorem over redirect: accented title) |
m (AUTOMATIC EDIT (latexlist): Replaced 24 formulas out of 26 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 26 formulas, 24 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|partial}} | |
+ | A theorem [[#References|[a6]]], [[#References|[a7]]], [[#References|[a4]]] saying that for a pointwise convergent sequence $\{ \mu _ { n } \}$ of countably additive measures (cf. [[Measure|Measure]]) defined on a $\sigma$-algebra $\Sigma$, i.e., $\operatorname { lim } _ { n \rightarrow \infty } \mu _ { n } ( E ) = \mu ( E )$, $E \in \Sigma$: | ||
− | + | i) the limit $m$ is a countably additive measure; | |
− | + | ii) $\{ \mu _ { n } \}$ is uniformly $\sigma$-additive. As is well-known, the Nikodým convergence theorem for measures fails in general for algebras of sets. But there are convergence theorems in which the initial convergence conditions are imposed on certain subfamilies of a given $\sigma$-algebra; those subfamilies need not be $\sigma$-algebras. The following definitions are useful [[#References|[a2]]], [[#References|[a9]]], [[#References|[a8]]]: | |
− | + | SCP) An algebra $\mathcal{A}$ has the sequential completeness property if each disjoint sequence $\{ E _ { n } \}$ from $\mathcal{A}$ has a subsequence $\{ E _ { n_j} \}$ whose union is in $\mathcal{A}$. | |
− | and < | + | SIP) An algebra $\mathcal{A}$ has the subsequentional interpolation property if for each subsequence $\{ A _ { j n } \}$ of each disjoint sequence $\{ A _ { j } \}$ from $\mathcal{A}$ there are a subsequence $\{ A _ { j n _ { k } } \}$ and a set $B \in \mathcal{A}$ such that |
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n120/n120080/n12008023.png"/></td> </tr></table> | ||
+ | |||
+ | and $A _ { j } \cap B = \emptyset$ for $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$. | ||
The Nikodým convergence theorem holds on algebras with SCP) and SIP). | The Nikodým convergence theorem holds on algebras with SCP) and SIP). | ||
Line 22: | Line 30: | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> P. Antosik, C. Swartz, "Matrix methods in analysis" , ''Lecture Notes Math.'' , '''1113''' , Springer (1985)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> C. Constantinescu, "Some properties of spaces of measures" ''Suppl. Atti Sem. Mat. Fis. Univ. Modena'' , '''35''' (1991) pp. 1–286</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> J. Dieudonné, "Sur la convergence des suites de mesures de Radon" ''An. Acad. Brasil. Ci.'' , '''23''' (1951) pp. 21–38, 277–282</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> N. Dunford, J.T. Schwartz, "Linear operators Part I" , Interscience (1958)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> A. Grothendieck, "Sur les applications linéares faiblement compactes d'espaces du type $C ( K )$" ''Canad. J. Math.'' , '''5''' (1953) pp. 129–173</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> O. Nikodym, "Sur les suites de functions parfaitement additives d'ensembles abstraits" ''C.R. Acad. Sci. Paris'' , '''192''' (1931) pp. 727</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> O. Nikodym, "Sur les suites convergentes de functions parfaitement additives d'ensembles abstraits" ''Monatsh. Math.'' , '''40''' (1933) pp. 427–432</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995)</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> W. Schachermayer, "On some classsical measure-theoretic theorems for non-sigma complete Boolean algebras" ''Dissert. Math.'' , '''214''' (1982) pp. 1–33</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> C. Swartz, "Introduction to functional analysis" , M. Dekker (1992)</td></tr></table> |
Revision as of 16:52, 1 July 2020
A theorem [a6], [a7], [a4] saying that for a pointwise convergent sequence $\{ \mu _ { n } \}$ of countably additive measures (cf. Measure) defined on a $\sigma$-algebra $\Sigma$, i.e., $\operatorname { lim } _ { n \rightarrow \infty } \mu _ { n } ( E ) = \mu ( E )$, $E \in \Sigma$:
i) the limit $m$ is a countably additive measure;
ii) $\{ \mu _ { n } \}$ is uniformly $\sigma$-additive. As is well-known, the Nikodým convergence theorem for measures fails in general for algebras of sets. But there are convergence theorems in which the initial convergence conditions are imposed on certain subfamilies of a given $\sigma$-algebra; those subfamilies need not be $\sigma$-algebras. The following definitions are useful [a2], [a9], [a8]:
SCP) An algebra $\mathcal{A}$ has the sequential completeness property if each disjoint sequence $\{ E _ { n } \}$ from $\mathcal{A}$ has a subsequence $\{ E _ { n_j} \}$ whose union is in $\mathcal{A}$.
SIP) An algebra $\mathcal{A}$ has the subsequentional interpolation property if for each subsequence $\{ A _ { j n } \}$ of each disjoint sequence $\{ A _ { j } \}$ from $\mathcal{A}$ there are a subsequence $\{ A _ { j n _ { k } } \}$ and a set $B \in \mathcal{A}$ such that
and $A _ { j } \cap B = \emptyset$ for $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$.
The Nikodým convergence theorem holds on algebras with SCP) and SIP).
A famous result of J. Dieudonné [a3], Prop. 8, and A. Grothendieck [a5], p. 150, states that for compact metric spaces, respectively locally compact spaces, convergence of a sequence of regular Borel measures on every open set implies convergence on all Borel sets (cf. also Borel set).
Many related results can be found in [a1], [a8], where the method of diagonal theorems is used instead of the commonly used Baire category theorem (see [a4], [a10] and Diagonal theorem).
See also Brooks–Jewett theorem; Vitali–Hahn–Saks theorem.
References
[a1] | P. Antosik, C. Swartz, "Matrix methods in analysis" , Lecture Notes Math. , 1113 , Springer (1985) |
[a2] | C. Constantinescu, "Some properties of spaces of measures" Suppl. Atti Sem. Mat. Fis. Univ. Modena , 35 (1991) pp. 1–286 |
[a3] | J. Dieudonné, "Sur la convergence des suites de mesures de Radon" An. Acad. Brasil. Ci. , 23 (1951) pp. 21–38, 277–282 |
[a4] | N. Dunford, J.T. Schwartz, "Linear operators Part I" , Interscience (1958) |
[a5] | A. Grothendieck, "Sur les applications linéares faiblement compactes d'espaces du type $C ( K )$" Canad. J. Math. , 5 (1953) pp. 129–173 |
[a6] | O. Nikodym, "Sur les suites de functions parfaitement additives d'ensembles abstraits" C.R. Acad. Sci. Paris , 192 (1931) pp. 727 |
[a7] | O. Nikodym, "Sur les suites convergentes de functions parfaitement additives d'ensembles abstraits" Monatsh. Math. , 40 (1933) pp. 427–432 |
[a8] | E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995) |
[a9] | W. Schachermayer, "On some classsical measure-theoretic theorems for non-sigma complete Boolean algebras" Dissert. Math. , 214 (1982) pp. 1–33 |
[a10] | C. Swartz, "Introduction to functional analysis" , M. Dekker (1992) |
Nikodým convergence theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nikod%C3%BDm_convergence_theorem&oldid=23434