|
|
Line 1: |
Line 1: |
− | A bounded simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203101.png" /> in the complex plane such that its boundary is the same as the boundary of the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203102.png" /> which is the component of the complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203103.png" /> containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203104.png" />. A domain bounded by a Jordan curve is an example of a Carathéodory domain. Every Carathéodory domain is representable as the kernel of a decreasing convergent sequence of simply-connected domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203105.png" />: | + | {{TEX|done}} |
| + | A bounded simply-connected domain $G$ in the complex plane such that its boundary is the same as the boundary of the domain $G_\infty$ which is the component of the complement of $G$ containing the point $\infty$. A domain bounded by a Jordan curve is an example of a Carathéodory domain. Every Carathéodory domain is representable as the kernel of a decreasing convergent sequence of simply-connected domains $\{ G_n\}$: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203106.png" /></td> </tr></table>
| + | $$\overline{G}\subset G_{n+1}\subset\overline{G}_{n+1}\subset G_n,\quad n=1,2,\ldots,$$ |
| | | |
− | and every domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203107.png" /> for which there exists such a sequence is a Carathéodory domain (Carathéodory's theorem, see [[#References|[1]]]). | + | and every domain $G$ for which there exists such a sequence is a Carathéodory domain (Carathéodory's theorem, see {{Cite|Ca}}). |
| | | |
− | ====References====
| + | Let $G_n$ be a sequence of simply-connected domains in the complex plane. Suppose that each contains a fixed disc $D$ with centre $z_0$. Let |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Carathéodory, "Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten" ''Math. Ann.'' , '''72''' (1912) pp. 107–144</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) pp. Chapt. 2 (Translated from Russian)</TD></TR></table>
| |
| | | |
| + | $$ E=\{ z:\mathrm{there is a neighbourhood }N\mathrm{ such that }N\subset G_n\mathrm{ for all large enough }n\}.$$ |
| | | |
| + | Then $E$ is open. Let $G_{z_0}$ be the component of $E$ containing $z_0$. This domain is called the kernel of the sequence $\{ G_n\}$ (relative to the point $z_0$). The sequence $\{ G_n\}$ is said to converge to $G_{z_0}$ if every subsequence of $\{ G_n\}$ has the same kernel relative to $z_0$ as $\{ G_n\}$ itself. See {{Cite|Ma}}. |
| | | |
− | ====Comments==== | + | ====References==== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203108.png" /> be a sequence of simply-connected domains in the complex plane. Suppose that each contains a fixed disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c0203109.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031010.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031011.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031012.png" /> is open. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031013.png" /> be the component of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031014.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031015.png" />. This domain is called the kernel of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031016.png" /> (relative to the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031017.png" />). The sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031018.png" /> is said to converge to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031019.png" /> if every subsequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031020.png" /> has the same kernel relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031021.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020310/c02031022.png" /> itself. Cf. [[#References|[2]]].
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ca}}||valign="top"| C. Carathéodory, "Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten" ''Math. Ann.'' , '''72''' (1912) pp. 107–144 |
| + | |- |
| + | |valign="top"|{{Ref|Ma}}||valign="top"| A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) pp. Chapt. 2 (Translated from Russian) |
| + | |- |
| + | |} |
Revision as of 16:55, 21 April 2012
A bounded simply-connected domain $G$ in the complex plane such that its boundary is the same as the boundary of the domain $G_\infty$ which is the component of the complement of $G$ containing the point $\infty$. A domain bounded by a Jordan curve is an example of a Carathéodory domain. Every Carathéodory domain is representable as the kernel of a decreasing convergent sequence of simply-connected domains $\{ G_n\}$:
$$\overline{G}\subset G_{n+1}\subset\overline{G}_{n+1}\subset G_n,\quad n=1,2,\ldots,$$
and every domain $G$ for which there exists such a sequence is a Carathéodory domain (Carathéodory's theorem, see [Ca]).
Let $G_n$ be a sequence of simply-connected domains in the complex plane. Suppose that each contains a fixed disc $D$ with centre $z_0$. Let
$$ E=\{ z:\mathrm{there is a neighbourhood }N\mathrm{ such that }N\subset G_n\mathrm{ for all large enough }n\}.$$
Then $E$ is open. Let $G_{z_0}$ be the component of $E$ containing $z_0$. This domain is called the kernel of the sequence $\{ G_n\}$ (relative to the point $z_0$). The sequence $\{ G_n\}$ is said to converge to $G_{z_0}$ if every subsequence of $\{ G_n\}$ has the same kernel relative to $z_0$ as $\{ G_n\}$ itself. See [Ma].
References
[Ca] |
C. Carathéodory, "Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten" Math. Ann. , 72 (1912) pp. 107–144
|
[Ma] |
A.I. Markushevich, "Theory of functions of a complex variable" , 3 , Chelsea (1977) pp. Chapt. 2 (Translated from Russian)
|
How to Cite This Entry:
Carathéodory domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carath%C3%A9odory_domain&oldid=23216
This article was adapted from an original article by E.G. Goluzina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article