Difference between revisions of "Brøndsted-Rockafellar theorem"
Ulf Rehmann (talk | contribs) m (moved Brondsted-Rockafellar theorem to Brøndsted-Rockafellar theorem: accented title) |
m (link) |
||
Line 1: | Line 1: | ||
− | An extended-real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109201.png" /> on a [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109202.png" /> over the real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109203.png" /> is said to be proper if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109204.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109205.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109206.png" /> for at least one point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109207.png" />. The epigraph of such a function is the subset of the product space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109208.png" /> defined by | + | An extended-real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109201.png" /> on a [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109202.png" /> over the real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109203.png" /> is said to be proper if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109204.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109205.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109206.png" /> for at least one point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109207.png" />. The [[epigraph]] of such a function is the subset of the product space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109208.png" /> defined by |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109209.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110920/b1109209.png" /></td> </tr></table> |
Revision as of 17:02, 7 May 2017
An extended-real-valued function on a Banach space over the real numbers is said to be proper if for all and for at least one point . The epigraph of such a function is the subset of the product space defined by
The function is convex (cf. Convex function (of a real variable)) precisely when the set is convex (cf. Convex set) and is lower semi-continuous (cf. Semi-continuous function) precisely when is closed (cf. Closed set). A continuous linear functional on (that is, a member of the dual space ) is said to be a subgradient of at the point provided and for all . The set of all subgradients to at (where is finite) forms the subdifferential of at . The Brøndsted–Rockafellar theorem [a2] asserts that for a proper convex lower semi-continuous function , the set of points where is non-empty is dense in the set of where is finite (cf. Dense set). This is related to the Bishop–Phelps theorem [a1] (and the proof uses techniques of the latter), since a subgradient at a point can be identified with a support functional (cf. Support function) of at the point . These techniques were again applied to obtain minimization results (the Ekeland variational principle) for non-convex lower semi-continuous functions [a3]; see [a4] for a survey.
References
[a1] | E. Bishop, R.R. Phelps, "The support functionals of a convex set" P. Klee (ed.) , Convexity , Proc. Symp. Pure Math. , 7 , Amer. Math. Soc. (1963) pp. 27–35 |
[a2] | A. Brøndsted, R.T. Rockafellar, "On the subdifferentiability of convex functions" Proc. Amer. Math. Soc. , 16 (1965) pp. 605–611 |
[a3] | I. Ekeland, "On the variational principle" J. Math. Anal. Appl. , 47 (1974) pp. 324–353 |
[a4] | I. Ekeland, "Nonconvex minimization problems" Bull. Amer. Math. Soc. (NS) , 1 (1979) pp. 443–474 |
Brøndsted-Rockafellar theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Br%C3%B8ndsted-Rockafellar_theorem&oldid=23200