Difference between revisions of "Kruskal-Katona theorem"
Ulf Rehmann (talk | contribs) m (moved Kruskal–Katona theorem to Kruskal-Katona theorem: ascii title) |
m (AUTOMATIC EDIT (latexlist): Replaced 58 formulas out of 58 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 58 formulas, 58 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | Let $[ n ] : = \{ 1 , \dots , n \}$ and $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$, $k = 0 , \dots , n$ (cf. also [[Sperner property|Sperner property]]; [[Sperner theorem|Sperner theorem]]). The elements of $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ can be linearly ordered in the following way: $X < Y$ if the largest element in which $X$ and $Y$ differ is in $Y$ (cf. also [[Totally ordered set|Totally ordered set]]). If $\{ a _ { 1 } + 1 , \dots , a _ { k } + 1 \}$, $0 \leq a _ { 1 } < \ldots < a _ { k } \leq n - 1$, is the $( m + 1 )$th element in this order, then | ||
− | + | \begin{equation} \tag{a1} m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { a _ { k - 1} } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { a _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { a _ { 1 } } \\ { 1 } \end{array} \right), \end{equation} | |
− | + | since $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right)$ $k$-element subsets of $[ n ]$ have maximal element smaller than $a _ { k } + 1$, $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ have maximal element $a _ { k } + 1$ but the second largest element smaller than $a _ { k - 1} + 1$, etc.. Equation (a1) is called the $k$-representation of $m$, $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ (for $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$, one takes $a _ { 1 } = 0$, $a _ { 2 } = 1 , \dots , a _ { k - 1 } = k - 2$, $a _ { k } = n$). This (unique) representation can be found directly by choosing $a_k$ maximal such that $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$, $a_{k - 1}$ maximal such that $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right) \leq m - \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right)$, etc.. | |
− | + | For a family ${\cal F} \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$, the lower shadow of $\mathcal{F}$ is defined by | |
− | + | \begin{equation*} \Delta ( \mathcal{F} ) : = \left\{ Y \in \left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right) : Y \subset X \text { for some } X \in \mathcal{F} \right\}. \end{equation*} | |
− | + | If $m$ is given as above, then the lower shadow of the family of the first $m$ elements in $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ is the family of all $( k - 1 )$-element subsets of $[ n ]$ having maximal element smaller than $a _ { k } + 1$, of all $( k - 1 )$-element subsets of $[ n ]$ having maximal element $a _ { k } + 1$, but the second largest element smaller than $a _ { k - 1} + 1$, etc., i.e. the family of the first $\partial _ { k } ( m )$ elements of $\left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right)$ where | |
− | + | \begin{equation*} \partial _ { k } ( m ) = \left( \begin{array} { c } { a _ { k } } \\ { k - 1 } \end{array} \right) + \left( \begin{array} { c } { a _ { k } - 1 } \\ { k - 2 } \end{array} \right) + \ldots + \left( \begin{array} { c } { a _ { 1 } } \\ { 0 } \end{array} \right). \end{equation*} | |
− | + | The Kruskal–Katona theorem states that in this way one obtains a lower shadow of minimum size, i.e., if $\mathcal{F}$ is any $m$-element family in $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ and $m$ is given by (a1), then | |
− | + | \begin{equation*} \Delta ( {\cal F} ) | \geq \partial _ { k } ( m ). \end{equation*} | |
− | + | There exist generalizations to similar results for other partially ordered sets, like products of chains, products of stars, the partially ordered set of subwords of $0$-$1$-words, and the partially ordered set of submatrices of a matrix. | |
+ | |||
+ | The following result of L. Lovász is weaker but numerically easier to handle: If ${\cal F} \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ and $| \mathcal F | = \left( \begin{array} { l } { x } \\ { k } \end{array} \right)$ with some real $x$, where $k \leq x \leq n$, then | ||
+ | |||
+ | \begin{equation*} | \Delta ( \mathcal{F} ) | \geq \left( \begin{array} { c } { x } \\ { k - 1 } \end{array} \right). \end{equation*} | ||
The original papers by J.B. Kruskal and G.O.H. Katona are [[#References|[a3]]], [[#References|[a4]]]. | The original papers by J.B. Kruskal and G.O.H. Katona are [[#References|[a3]]], [[#References|[a4]]]. | ||
Line 28: | Line 36: | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> K. Engel, "Sperner theory" , Cambridge Univ. Press (1997)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> P. Frankl, "Extremal set systems" R.L. Graham (ed.) M. Grötschel (ed.) L. Lovász (ed.) , ''Handbook of Combinatorics'' , '''2''' , Elsevier (1995) pp. 1293–1329</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> J.B. Kruskal, "The number of simplices in a complex" , ''Mathematical Optimization Techniques'' , Univ. California Press (1963) pp. 251–278</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> G.O.H. Katona, "A theorem of finite sets" , ''Theory of Graphs. Proc. Colloq. Tihany'' , Akad. Kiadó (1966) pp. 187–207</td></tr></table> |
Revision as of 16:45, 1 July 2020
Let $[ n ] : = \{ 1 , \dots , n \}$ and $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$, $k = 0 , \dots , n$ (cf. also Sperner property; Sperner theorem). The elements of $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ can be linearly ordered in the following way: $X < Y$ if the largest element in which $X$ and $Y$ differ is in $Y$ (cf. also Totally ordered set). If $\{ a _ { 1 } + 1 , \dots , a _ { k } + 1 \}$, $0 \leq a _ { 1 } < \ldots < a _ { k } \leq n - 1$, is the $( m + 1 )$th element in this order, then
\begin{equation} \tag{a1} m = \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) + \left( \begin{array} { c } { a _ { k - 1} } \\ { k - 1 } \end{array} \right) + \ldots + \left( \begin{array} { c } { a _ { 2 } } \\ { 2 } \end{array} \right) + \left( \begin{array} { c } { a _ { 1 } } \\ { 1 } \end{array} \right), \end{equation}
since $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right)$ $k$-element subsets of $[ n ]$ have maximal element smaller than $a _ { k } + 1$, $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ have maximal element $a _ { k } + 1$ but the second largest element smaller than $a _ { k - 1} + 1$, etc.. Equation (a1) is called the $k$-representation of $m$, $1 \leq m \leq \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ (for $m = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$, one takes $a _ { 1 } = 0$, $a _ { 2 } = 1 , \dots , a _ { k - 1 } = k - 2$, $a _ { k } = n$). This (unique) representation can be found directly by choosing $a_k$ maximal such that $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$, $a_{k - 1}$ maximal such that $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right) \leq m - \left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right)$, etc..
For a family ${\cal F} \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$, the lower shadow of $\mathcal{F}$ is defined by
\begin{equation*} \Delta ( \mathcal{F} ) : = \left\{ Y \in \left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right) : Y \subset X \text { for some } X \in \mathcal{F} \right\}. \end{equation*}
If $m$ is given as above, then the lower shadow of the family of the first $m$ elements in $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ is the family of all $( k - 1 )$-element subsets of $[ n ]$ having maximal element smaller than $a _ { k } + 1$, of all $( k - 1 )$-element subsets of $[ n ]$ having maximal element $a _ { k } + 1$, but the second largest element smaller than $a _ { k - 1} + 1$, etc., i.e. the family of the first $\partial _ { k } ( m )$ elements of $\left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right)$ where
\begin{equation*} \partial _ { k } ( m ) = \left( \begin{array} { c } { a _ { k } } \\ { k - 1 } \end{array} \right) + \left( \begin{array} { c } { a _ { k } - 1 } \\ { k - 2 } \end{array} \right) + \ldots + \left( \begin{array} { c } { a _ { 1 } } \\ { 0 } \end{array} \right). \end{equation*}
The Kruskal–Katona theorem states that in this way one obtains a lower shadow of minimum size, i.e., if $\mathcal{F}$ is any $m$-element family in $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ and $m$ is given by (a1), then
\begin{equation*} \Delta ( {\cal F} ) | \geq \partial _ { k } ( m ). \end{equation*}
There exist generalizations to similar results for other partially ordered sets, like products of chains, products of stars, the partially ordered set of subwords of $0$-$1$-words, and the partially ordered set of submatrices of a matrix.
The following result of L. Lovász is weaker but numerically easier to handle: If ${\cal F} \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ and $| \mathcal F | = \left( \begin{array} { l } { x } \\ { k } \end{array} \right)$ with some real $x$, where $k \leq x \leq n$, then
\begin{equation*} | \Delta ( \mathcal{F} ) | \geq \left( \begin{array} { c } { x } \\ { k - 1 } \end{array} \right). \end{equation*}
The original papers by J.B. Kruskal and G.O.H. Katona are [a3], [a4].
According to [a2], p. 1296, the Kruskal–Katona theorem is probably the most important one in finite extremal set theory.
References
[a1] | K. Engel, "Sperner theory" , Cambridge Univ. Press (1997) |
[a2] | P. Frankl, "Extremal set systems" R.L. Graham (ed.) M. Grötschel (ed.) L. Lovász (ed.) , Handbook of Combinatorics , 2 , Elsevier (1995) pp. 1293–1329 |
[a3] | J.B. Kruskal, "The number of simplices in a complex" , Mathematical Optimization Techniques , Univ. California Press (1963) pp. 251–278 |
[a4] | G.O.H. Katona, "A theorem of finite sets" , Theory of Graphs. Proc. Colloq. Tihany , Akad. Kiadó (1966) pp. 187–207 |
Kruskal-Katona theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kruskal-Katona_theorem&oldid=22675