|
|
Line 1: |
Line 1: |
− | ''of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205601.png" />''
| + | c0205601.png ~/encyclopedia/old_files/data/C020/C.0200560 |
| + | 61 0 61 |
| + | {{TEX|done}} |
| + | ''of a group $ G $ '' |
| | | |
− | A maximal nilpotent subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205602.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205603.png" /> each normal subgroup of finite index of which has finite index in its normalizer in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205604.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205605.png" /> is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205606.png" /> can also be defined as a closed connected subgroup whose Lie algebra is a [[Cartan subalgebra|Cartan subalgebra]] of the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205607.png" />. An example of a Cartan subgroup is the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205608.png" /> of all diagonal matrices in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c0205609.png" /> of all non-singular matrices.
| |
| | | |
− | In a connected linear algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056010.png" />, a Cartan subgroup can also be defined as the centralizer of a maximal torus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056011.png" />, or as a connected closed nilpotent subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056012.png" /> which coincides with the connected component of the identity (the identity component) of its normalizer in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056013.png" />. The sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056015.png" /> of all semi-simple and unipotent elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056016.png" /> (see [[Jordan decomposition|Jordan decomposition]]) are closed subgroups in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056017.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056018.png" />. In addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056019.png" /> is the unique maximal torus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056020.png" /> lying in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056021.png" />. The dimension of a Cartan subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056022.png" /> is called the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056023.png" />. The union of all Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056024.png" /> contains an open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056025.png" /> with respect to the Zariski topology (but is not, in general, the whole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056026.png" />). Every semi-simple element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056027.png" /> lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056028.png" /> is a surjective morphism of linear algebraic groups, then the Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056029.png" /> are images with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056030.png" /> of Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056031.png" />. Any two Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056032.png" /> are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056033.png" /> is a maximal torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056034.png" />.
| + | A maximal nilpotent subgroup $ C $ |
| + | of $ G $ |
| + | each normal subgroup of finite index of which has finite index in its normalizer in $ G $ . |
| + | If $ G $ |
| + | is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of $ G $ |
| + | can also be defined as a closed connected subgroup whose Lie algebra is a [[Cartan subalgebra|Cartan subalgebra]] of the Lie algebra of $ G $ . |
| + | An example of a Cartan subgroup is the subgroup $ D $ |
| + | of all diagonal matrices in the group $ \mathop{\rm GL}\nolimits _{n} (k) $ |
| + | of all non-singular matrices. |
| | | |
− | Let the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056035.png" /> be defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056036.png" />. Then there exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056037.png" /> a Cartan subgroup which is also defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056038.png" />; in fact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056039.png" /> is generated by its Cartan subgroups defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056040.png" />. Two Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056041.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056042.png" /> need not be conjugate over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056043.png" /> (but in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056044.png" /> is a solvable group, they are conjugate). The variety of Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056045.png" /> is rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056046.png" />.
| + | In a connected linear algebraic group $ G $ , |
| + | a Cartan subgroup can also be defined as the centralizer of a maximal torus of $ G $ , |
| + | or as a connected closed nilpotent subgroup $ C $ |
| + | which coincides with the connected component of the identity (the identity component) of its normalizer in $ G $ . |
| + | The sets $ C _{s} $ |
| + | and $ C _{u} $ |
| + | of all semi-simple and unipotent elements of $ C $ ( |
| + | see [[Jordan decomposition|Jordan decomposition]]) are closed subgroups in $ C $ , |
| + | and $ C = C _{s} \times C _{u} $ . |
| + | In addition, $ C _{s} $ |
| + | is the unique maximal torus of $ G $ |
| + | lying in $ C $ . |
| + | The dimension of a Cartan subgroup of $ G $ |
| + | is called the rank of $ G $ . |
| + | The union of all Cartan subgroups of $ G $ |
| + | contains an open subset of $ G $ |
| + | with respect to the Zariski topology (but is not, in general, the whole of $ G $ ). |
| + | Every semi-simple element of $ G $ |
| + | lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If $ \phi : \ G \rightarrow G ^ \prime $ |
| + | is a surjective morphism of linear algebraic groups, then the Cartan subgroups of $ G ^ \prime $ |
| + | are images with respect to $ \phi $ |
| + | of Cartan subgroups of $ G $ . |
| + | Any two Cartan subgroups of $ G $ |
| + | are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group $ G $ |
| + | is a maximal torus in $ G $ . |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056047.png" /> be a connected real Lie group with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056048.png" />. Then the Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056049.png" /> are closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056050.png" /> (but not necessarily connected) and their Lie algebras are Cartan subalgebras of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056051.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056052.png" /> is an analytic subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056054.png" /> is the smallest algebraic subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056055.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056056.png" />, then the Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056057.png" /> are intersections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056058.png" /> with the Cartan subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056059.png" />. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056060.png" /> is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056061.png" /> lies in some Cartan subgroup. | + | |
| + | Let the group $ G $ |
| + | be defined over a field $ k $ . |
| + | Then there exists in $ G $ |
| + | a Cartan subgroup which is also defined over $ k $ ; |
| + | in fact, $ G $ |
| + | is generated by its Cartan subgroups defined over $ k $ . |
| + | Two Cartan subgroups of $ G $ |
| + | defined over $ k $ |
| + | need not be conjugate over $ k $ ( |
| + | but in the case when $ G $ |
| + | is a solvable group, they are conjugate). The variety of Cartan subgroups of $ G $ |
| + | is rational over $ k $ . |
| + | |
| + | |
| + | Let $ G $ |
| + | be a connected real Lie group with Lie algebra $ \mathfrak g $ . |
| + | Then the Cartan subgroups of $ G $ |
| + | are closed in $ G $ ( |
| + | but not necessarily connected) and their Lie algebras are Cartan subalgebras of $ \mathfrak g $ . |
| + | If $ G $ |
| + | is an analytic subgroup in $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $ |
| + | and $ \overline{G} $ |
| + | is the smallest algebraic subgroup of $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $ |
| + | containing $ G $ , |
| + | then the Cartan subgroups of $ G $ |
| + | are intersections of $ G $ |
| + | with the Cartan subgroups of $ \overline{G} $ . |
| + | In the case when $ G $ |
| + | is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of $ G $ |
| + | lies in some Cartan subgroup. |
| | | |
| ====References==== | | ====References==== |
c0205601.png ~/encyclopedia/old_files/data/C020/C.0200560
61 0 61
of a group $ G $
A maximal nilpotent subgroup $ C $
of $ G $
each normal subgroup of finite index of which has finite index in its normalizer in $ G $ .
If $ G $
is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of $ G $
can also be defined as a closed connected subgroup whose Lie algebra is a Cartan subalgebra of the Lie algebra of $ G $ .
An example of a Cartan subgroup is the subgroup $ D $
of all diagonal matrices in the group $ \mathop{\rm GL}\nolimits _{n} (k) $
of all non-singular matrices.
In a connected linear algebraic group $ G $ ,
a Cartan subgroup can also be defined as the centralizer of a maximal torus of $ G $ ,
or as a connected closed nilpotent subgroup $ C $
which coincides with the connected component of the identity (the identity component) of its normalizer in $ G $ .
The sets $ C _{s} $
and $ C _{u} $
of all semi-simple and unipotent elements of $ C $ (
see Jordan decomposition) are closed subgroups in $ C $ ,
and $ C = C _{s} \times C _{u} $ .
In addition, $ C _{s} $
is the unique maximal torus of $ G $
lying in $ C $ .
The dimension of a Cartan subgroup of $ G $
is called the rank of $ G $ .
The union of all Cartan subgroups of $ G $
contains an open subset of $ G $
with respect to the Zariski topology (but is not, in general, the whole of $ G $ ).
Every semi-simple element of $ G $
lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If $ \phi : \ G \rightarrow G ^ \prime $
is a surjective morphism of linear algebraic groups, then the Cartan subgroups of $ G ^ \prime $
are images with respect to $ \phi $
of Cartan subgroups of $ G $ .
Any two Cartan subgroups of $ G $
are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group $ G $
is a maximal torus in $ G $ .
Let the group $ G $
be defined over a field $ k $ .
Then there exists in $ G $
a Cartan subgroup which is also defined over $ k $ ;
in fact, $ G $
is generated by its Cartan subgroups defined over $ k $ .
Two Cartan subgroups of $ G $
defined over $ k $
need not be conjugate over $ k $ (
but in the case when $ G $
is a solvable group, they are conjugate). The variety of Cartan subgroups of $ G $
is rational over $ k $ .
Let $ G $
be a connected real Lie group with Lie algebra $ \mathfrak g $ .
Then the Cartan subgroups of $ G $
are closed in $ G $ (
but not necessarily connected) and their Lie algebras are Cartan subalgebras of $ \mathfrak g $ .
If $ G $
is an analytic subgroup in $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $
and $ \overline{G} $
is the smallest algebraic subgroup of $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $
containing $ G $ ,
then the Cartan subgroups of $ G $
are intersections of $ G $
with the Cartan subgroups of $ \overline{G} $ .
In the case when $ G $
is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of $ G $
lies in some Cartan subgroup.
References
[1a] | C. Chevalley, "Theory of Lie groups" , 1 , Princeton Univ. Press (1946) MR0082628 MR0015396 Zbl 0063.00842 |
[1b] | C. Chevalley, "Théorie des groupes de Lie" , 2–3 , Hermann (1951–1955) MR0068552 MR0051242 MR0019623 Zbl 0186.33104 Zbl 0054.01303 Zbl 0063.00843 |
[2] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[3] | A. Borel, J. Tits, "Groupes réductifs" Publ. Math. IHES , 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402 |
[4] | M. Demazure, A. Grothendieck, "Schémas en groupes I-III" , Lect. notes in math. , 151–153 , Springer (1970) |
References
[a1] | A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups" Tohoku Math. J. (2) , 20 (1968) pp. 443–497 MR0244259 Zbl 0211.53302 |