Difference between revisions of "Central simple algebra"
Ulf Rehmann (talk | contribs) m |
Ulf Rehmann (talk | contribs) m (mr,zbl,typos) |
||
Line 1: | Line 1: | ||
+ | {{MSC|16}} | ||
{{TEX|done}} | {{TEX|done}} | ||
− | + | ||
A central simple algebra is a simple associative algebra with a unit element that is a | A central simple algebra is a simple associative algebra with a unit element that is a | ||
Line 25: | Line 26: | ||
{| | {| | ||
|- | |- | ||
− | |valign="top"|{{Ref|Al}}||valign="top"| A.A. Albert, "Structure of algebras", Amer. Math. Soc. (1939) {{MR|0000595}} {{ZBL|0023.19901}} | + | |valign="top"|{{Ref|Al}}||valign="top"| A.A. Albert, "Structure of algebras", Amer. Math. Soc. (1939) {{MR|0000595}} {{ZBL|0023.19901}} |
|- | |- | ||
− | |valign="top"|{{Ref|De}}||valign="top"| M. Deuring, "Algebren", Springer (1935) {{ZBL|0011.19801}} | + | |valign="top"|{{Ref|De}}||valign="top"| M. Deuring, "Algebren", Springer (1935) {{ZBL|0011.19801}} {{MR|0228526}} |
|- | |- | ||
− | |valign="top"|{{Ref|DrKi}}||valign="top"| Yu.A. Drozd, V.V. Kirichenko, "Finite-dimensional algebras", Kiev (1980) (In Russian) {{MR|0591671}} {{ZBL|0469.16001}} | + | |valign="top"|{{Ref|DrKi}}||valign="top"| Yu.A. Drozd, V.V. Kirichenko, "Finite-dimensional algebras", Kiev (1980) (In Russian) {{MR|0591671}} {{ZBL|0469.16001}} |
|- | |- | ||
|valign="top"|{{Ref|Pe}}||valign="top"| R.S. Peirce, "Associative algebras", Springer (1980) | |valign="top"|{{Ref|Pe}}||valign="top"| R.S. Peirce, "Associative algebras", Springer (1980) | ||
|- | |- | ||
− | |valign="top"|{{Ref|He}}||valign="top"| I.N. Herstein, "Noncommutative rings", Math. Assoc. Amer. (1968) {{MR|0227205}} {{ZBL|0177.05801}} | + | |valign="top"|{{Ref|He}}||valign="top"| I.N. Herstein, "Noncommutative rings", Math. Assoc. Amer. (1968) {{MR|0227205}} {{ZBL|0177.05801}} |
|- | |- | ||
− | |valign="top"|{{Ref|Ja}}||valign="top"| N. Jacobson, "Structure of rings", Amer. Math. Soc. (1956) {{MR|0081264}} {{ZBL|0073.02002}} | + | |valign="top"|{{Ref|Ja}}||valign="top"| N. Jacobson, "Structure of rings", Amer. Math. Soc. (1956) {{MR|0081264}} {{ZBL|0073.02002}} |
|- | |- | ||
|} | |} |
Revision as of 21:42, 5 March 2012
2020 Mathematics Subject Classification: Primary: 16-XX [MSN][ZBL]
A central simple algebra is a simple associative algebra with a unit element that is a
central algebra. Every finite-dimensional central
simple algebra $A$ over a field $K$ is isomorphic to a matrix algebra
$M_n(C)$ over a finite-dimensional central division algebra $C$ over
$K$. In particular, if $K$ is algebraically closed, then every
finite-dimensional central simple algebra $A$ over $K$ is isomorphic
to $M_n(K)$, and if $K=\R$, then $A$ is isomorphic to the algebra of real or
quaternion matrices. The tensor product of a central simple algebra
$A$ and an arbitrary simple algebra $B$ is a simple algebra, which is
central if $B$ is central. Two finite-dimensional central simple
algebras $A$ and $B$ over $K$ are called equivalent if
$$A\otimes_K M_m(K) \cong B\otimes M_n(K)$$
for
certain $m$ and $n$, or, which is equivalent, if $A$ and $B$ are
isomorphic matrix algebras over one and the same central division
algebra. The equivalence classes of central simple algebras over $K$
form the
Brauer group of $K$ relative to the operation induced
by tensor multiplication.
References
[Al] | A.A. Albert, "Structure of algebras", Amer. Math. Soc. (1939) MR0000595 Zbl 0023.19901 |
[De] | M. Deuring, "Algebren", Springer (1935) Zbl 0011.19801 MR0228526 |
[DrKi] | Yu.A. Drozd, V.V. Kirichenko, "Finite-dimensional algebras", Kiev (1980) (In Russian) MR0591671 Zbl 0469.16001 |
[Pe] | R.S. Peirce, "Associative algebras", Springer (1980) |
[He] | I.N. Herstein, "Noncommutative rings", Math. Assoc. Amer. (1968) MR0227205 Zbl 0177.05801 |
[Ja] | N. Jacobson, "Structure of rings", Amer. Math. Soc. (1956) MR0081264 Zbl 0073.02002 |
Central simple algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Central_simple_algebra&oldid=21373