Difference between revisions of "User:Boris Tsirelson/sandbox1"
Line 30: | Line 30: | ||
A Borel space is called ''analytic'' if it is isomorphic to an analytic set. | A Borel space is called ''analytic'' if it is isomorphic to an analytic set. | ||
− | Equivalence of the two definitions follows from the [[Standard Borel space#Blackwell-Mackey theorem|Blackwell-Mackey theorem]] and the following simple fact: | + | Equivalence of the two definitions follows from the [[Standard Borel space#Blackwell-Mackey theorem|Blackwell-Mackey theorem]] and the following simple fact: every countably separated measurable space admits a one-to-one measurable map to a standard Borel space. |
----------------------- | ----------------------- |
Revision as of 20:12, 26 January 2012
Also: analytic measurable space
Category:Descriptive set theory Category:Classical measure theory
[ 2010 Mathematics Subject Classification MSN: 03E15,(28A05,54H05) | MSCwiki: 03E15 + 28A05,54H05 ]
$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called analytic if it is countably separated and isomorphic to a quotient space of a standard Borel space.
This is one out of several equivalent definitions (see below).
Finite and countable analytic Borel spaces are trivial: all subsets are measurable. Uncountable analytic Borel spaces are of cardinality continuum. Some, but not all, of them are standard; these are mutually isomorphic. Some additional (to ZFC) set-theoretic axioms imply that all nonstandard analytic Borel spaces are mutually isomorphic (see [1, Sect. 26.D]).
Non-example. The quotient group $\R/\Q$ (real numbers modulo rational numbers, additive) may be thought of as a quotient measurable space, $\R$ being endowed with its Borel σ-algebra. Then $\R/\Q$ is a quotient space of a standard Borel space, but not an analytic Borel space, because it is not countably separated. (See [2, Sect. 5].)
Relations to analytic sets
A subset of a standard Borel space is called analytic if it is the image of a standard Borel space under a Borel map. (See [1, Sect. 14.A].)
As every subset of a measurable space, an analytic set is itself a measurable space (a subspace of the standard Borel space).
Definition 2 (equivalent). A Borel space is called analytic if it is isomorphic to an analytic set.
Equivalence of the two definitions follows from the Blackwell-Mackey theorem and the following simple fact: every countably separated measurable space admits a one-to-one measurable map to a standard Borel space.
Theorem 1a. If a bijective map between analytic sets is measurable then the inverse map is also measurable. (See [3, Sect. 4.5].)
References
[1] | Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995). MR1321597 Zbl 0819.04002 |
[2] | George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165. MR0089999 Zbl 0082.11201 |
[3] | S.M. Srivastava, "A course on Borel sets", Springer-Verlag (1998). MR1619545 Zbl 0903.28001 |
Boris Tsirelson/sandbox1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox1&oldid=20539