Namespaces
Variants
Actions

Difference between revisions of "Pfaffian"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Sign was epsilon originally, not varepslion)
m
Line 1: Line 1:
 +
 +
{{TEX|done}}
 +
 
The Pfaffian (of a skew-symmetric  matrix $X$) is the  polynomial  $\def\Pf{\mathrm{Pf}\;} \Pf X$ in the entries of $X$ whose  square is [[Determinant|$\det X$]].    More precisely, if $X =  \|x_{ij}\|$ is a skew-symmetric matrix (i.e.    $x_{ij}=-x_{ji}$,  $x_{ii}=0$; such a matrix is sometimes also called an    alternating  matrix) of order $2n$ over a commutative-associative ring $A$ with a  unit, then $\Pf X$ is the element of $A$ given by the formula
 
The Pfaffian (of a skew-symmetric  matrix $X$) is the  polynomial  $\def\Pf{\mathrm{Pf}\;} \Pf X$ in the entries of $X$ whose  square is [[Determinant|$\det X$]].    More precisely, if $X =  \|x_{ij}\|$ is a skew-symmetric matrix (i.e.    $x_{ij}=-x_{ji}$,  $x_{ii}=0$; such a matrix is sometimes also called an    alternating  matrix) of order $2n$ over a commutative-associative ring $A$ with a  unit, then $\Pf X$ is the element of $A$ given by the formula
  

Revision as of 15:46, 29 January 2012


The Pfaffian (of a skew-symmetric matrix $X$) is the polynomial $\def\Pf{\mathrm{Pf}\;} \Pf X$ in the entries of $X$ whose square is $\det X$. More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e. $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an alternating matrix) of order $2n$ over a commutative-associative ring $A$ with a unit, then $\Pf X$ is the element of $A$ given by the formula

$$ \Pf X = \sum_s \epsilon(s)x_{i_1j_1}\ldots x_{i_nj_n}, $$

where the summation is over all possible partitions $s$ of the set $\{1,\ldots,2n\}$ into non-intersecting pairs $\{i_\alpha,j_\alpha\}$, where one may suppose that $i_\alpha<j_\alpha$, $\alpha=1,\ldots,n$, and where $\epsilon(s)$ is the sign of the permutation

$$ \left( \begin{matrix} 1 & 2 & \ldots & 2n-1 & 2n \\ i_1 & j_1 & \ldots & i_n & j_n \end{matrix} \right). $$

A Pfaffian has the following properties:

  1. $\Pf (C^T X C) = (\det C) (\Pf X)$ for any matrix $C$ of order $2n$;
  2. $(\Pf X)^2= \det X$;
  3. if $E$ is a free $A$-module with basis $e_1,\ldots,e_{2n}$ and if $$ u = \sum_{i < j} x_{ij} e_i \wedge e_j \in \bigwedge^2 A, $$ then $$ \bigwedge^n u =n! (\Pf X) e_1 \wedge \ldots \wedge e_{2n}. $$

References

[1] N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)
How to Cite This Entry:
Pfaffian. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pfaffian&oldid=20521
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article