|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| An integral of the type | | An integral of the type |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714701.png" /></td> </tr></table>
| + | $$J(y)=\int f(x,y)dx,$$ |
| | | |
− | in which the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714702.png" /> ranges over the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714703.png" /> (if the point ranges only over a certain domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714704.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714705.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714706.png" /> may be assumed to vanish for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714707.png" />), while the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714708.png" />, representing a set of parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p0714709.png" />, varies within some domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147010.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147011.png" />. | + | in which the point $x=(x_1,\ldots,x_n)$ ranges over the space $\mathbf R^n$ (if the point ranges only over a certain domain $D$ in $\mathbf R^n$, the function $f(x,y)$ may be assumed to vanish for $x\in\mathbf R^n\setminus D$), while the point $y=(y_1,\ldots,y_m)$, representing a set of parameters $y_1,\ldots,y_m$, varies within some domain $G$ of the space $\mathbf R^m$. |
| | | |
− | The main concern of the theory of such integrals is to determine conditions for the continuity and differentiability of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147012.png" /> with respect to the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147014.png" /> is interpreted as a [[Lebesgue integral|Lebesgue integral]], one obtains less restrictive conditions for its continuity and differentiability. The following propositions are valid. | + | The main concern of the theory of such integrals is to determine conditions for the continuity and differentiability of $J(y)$ with respect to the parameters $y_1,\ldots,y_m$. If $J(y)$ is interpreted as a [[Lebesgue integral|Lebesgue integral]], one obtains less restrictive conditions for its continuity and differentiability. The following propositions are valid. |
| | | |
− | 1) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147015.png" /> is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147016.png" /> in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147017.png" /> for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147018.png" /> and if there exists an integrable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147019.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147020.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147021.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147022.png" /> and almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147024.png" /> is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147025.png" />. | + | 1) If $f(x,y)$ is continuous in $y$ in the domain $G\subset\mathbf R^m$ for almost-all $x\in\mathbf R^n$ and if there exists an integrable function $g$ on $\mathbf R^n$ such that $f(x,y)\leq g(x)$ for every $y\in G$ and almost-all $x\in\mathbf R^n$, then $J(y)$ is continuous in $G$. |
| | | |
− | 2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147026.png" /> be a function defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147028.png" />. Assume that the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147029.png" /> exists for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147030.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147031.png" /> and that is a continuous function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147032.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147033.png" /> for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147034.png" />. Assume, moreover, that there exists an integrable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147035.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147036.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147037.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147038.png" /> and almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147039.png" />. Finally, assume that for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147040.png" /> the integral | + | 2) Let $f(x,t)$ be a function defined for $x\in\mathbf R^n$, $t\in(a,b)$. Assume that the derivative $\partial f(x,t)/\partial t$ exists for almost-all $x\in\mathbf R^n$ and every $t\in(a,b)$ and that is a continuous function of $t$ on $(a,b)$ for almost-all $x\in\mathbf R^n$. Assume, moreover, that there exists an integrable function $g$ on $\mathbf R^n$ such that $|\partial f(x,t)/\partial t|\leq g(x)$ for every $t\in(a,b)$ and almost-all $x\in\mathbf R^n. Finally, assume that for some $t_0\in(a,b)$ the integral |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147041.png" /></td> </tr></table>
| + | $$\int f(x,t_0)dx$$ |
| | | |
| exists. Then the function | | exists. Then the function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147042.png" /></td> </tr></table>
| + | $$J(t)=\int f(x,t)dx$$ |
| | | |
− | is differentiable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147043.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147044.png" />, and its derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147045.png" /> may be evaluated by differentiating under the integral sign: | + | is differentiable with respect to $t$ on $(a,b)$, and its derivative $J'(t)$ may be evaluated by differentiating under the integral sign: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147046.png" /></td> </tr></table>
| + | $$J'(t)=\int\frac{\partial f}{\partial t}(x,t)dx.$$ |
| | | |
| These two propositions imply a series of simpler propositions about the continuity and differentiability of integrals with parameters, relating to the interpretation of the integral as a Riemann integral and to more specific cases (see [[#References|[2]]]–[[#References|[4]]]). | | These two propositions imply a series of simpler propositions about the continuity and differentiability of integrals with parameters, relating to the interpretation of the integral as a Riemann integral and to more specific cases (see [[#References|[2]]]–[[#References|[4]]]). |
Line 26: |
Line 27: |
| For the simplest [[Improper integral|improper integral]] of the first kind, | | For the simplest [[Improper integral|improper integral]] of the first kind, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147047.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$J(t)=\int_a^\infty f(x,t)dx,\tag{*}$$ |
| | | |
− | one introduces the notion of uniform convergence with respect to the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147048.png" /> in a closed interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147049.png" />. This integral is said to be uniformly convergent in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147050.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147051.png" /> if, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147052.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147053.png" /> such that | + | one introduces the notion of uniform convergence with respect to the parameter $t$ in a closed interval $c\leq t\leq d$. This integral is said to be uniformly convergent in $t$ on $[c,d]$ if, for each $\epsilon>0$, there exists an $A(\epsilon)>0$ such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147054.png" /></td> </tr></table> | + | $$\left|\int_R^\infty f(x,t)dx\right|<\epsilon$$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147055.png" />. | + | for all $R\geq A(\epsilon)$. |
| | | |
| The following propositions are valid. | | The following propositions are valid. |
| | | |
− | a) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147056.png" /> is continuous in a half-strip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147057.png" /> and if the integral (*) is uniformly convergent in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147058.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147059.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147060.png" /> is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147061.png" />. | + | a) If $f(x,t)$ is continuous in a half-strip $[a\leq x<\infty,c<t\leq d]$ and if the integral \ref{*} is uniformly convergent in $t$ on $[c,d]$, then $J(t)$ is continuous in $c<t\leq d$. |
| | | |
− | b) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147062.png" /> and the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147063.png" /> are continuous in a half-strip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147064.png" />, if the integral (*) is convergent for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147065.png" /> and if the integral | + | b) If $f(x,t)$ and the derivative $\partial f(x,t)/\partial t$ are continuous in a half-strip $[a\leq x<\infty,c\leq t\leq d]$, if the integral \ref{*} is convergent for some $t\in[c,d]$ and if the integral |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147066.png" /></td> </tr></table>
| + | $$\int_a^\infty\frac{\partial f}{\partial t}(x,t)dx$$ |
| | | |
− | is uniformly convergent in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147067.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147068.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147069.png" /> is differentiable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147070.png" /> and its derivative may be evaluated by the formula | + | is uniformly convergent in $t$ on $[c,d]$, then the function $J(t)$ is differentiable on $[c,d]$ and its derivative may be evaluated by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071470/p07147071.png" /></td> </tr></table>
| + | $$J'(t)=\int_a^\infty\frac{\partial f}{\partial t}(x,t)dx.$$ |
| | | |
| Analogous propositions hold for improper integrals of the second kind. | | Analogous propositions hold for improper integrals of the second kind. |
An integral of the type
$$J(y)=\int f(x,y)dx,$$
in which the point $x=(x_1,\ldots,x_n)$ ranges over the space $\mathbf R^n$ (if the point ranges only over a certain domain $D$ in $\mathbf R^n$, the function $f(x,y)$ may be assumed to vanish for $x\in\mathbf R^n\setminus D$), while the point $y=(y_1,\ldots,y_m)$, representing a set of parameters $y_1,\ldots,y_m$, varies within some domain $G$ of the space $\mathbf R^m$.
The main concern of the theory of such integrals is to determine conditions for the continuity and differentiability of $J(y)$ with respect to the parameters $y_1,\ldots,y_m$. If $J(y)$ is interpreted as a Lebesgue integral, one obtains less restrictive conditions for its continuity and differentiability. The following propositions are valid.
1) If $f(x,y)$ is continuous in $y$ in the domain $G\subset\mathbf R^m$ for almost-all $x\in\mathbf R^n$ and if there exists an integrable function $g$ on $\mathbf R^n$ such that $f(x,y)\leq g(x)$ for every $y\in G$ and almost-all $x\in\mathbf R^n$, then $J(y)$ is continuous in $G$.
2) Let $f(x,t)$ be a function defined for $x\in\mathbf R^n$, $t\in(a,b)$. Assume that the derivative $\partial f(x,t)/\partial t$ exists for almost-all $x\in\mathbf R^n$ and every $t\in(a,b)$ and that is a continuous function of $t$ on $(a,b)$ for almost-all $x\in\mathbf R^n$. Assume, moreover, that there exists an integrable function $g$ on $\mathbf R^n$ such that $|\partial f(x,t)/\partial t|\leq g(x)$ for every $t\in(a,b)$ and almost-all $x\in\mathbf R^n. Finally, assume that for some $t_0\in(a,b)$ the integral
'"`UNIQ-MathJax2-QINU`"'
exists. Then the function
'"`UNIQ-MathJax3-QINU`"'
is differentiable with respect to $t$ on $(a,b)$, and its derivative $J'(t)$ may be evaluated by differentiating under the integral sign:
'"`UNIQ-MathJax4-QINU`"'
These two propositions imply a series of simpler propositions about the continuity and differentiability of integrals with parameters, relating to the interpretation of the integral as a Riemann integral and to more specific cases (see [[#References|[2]]]–[[#References|[4]]]).
=='"`UNIQ--h-0--QINU`"'Parameter-dependent improper integrals.==
For the simplest [[Improper integral|improper integral]] of the first kind,
'"`UNIQ-MathJax5-QINU`"'
one introduces the notion of uniform convergence with respect to the parameter $t$ in a closed interval $c\leq t\leq d$. This integral is said to be uniformly convergent in $t$ on $[c,d]$ if, for each $\epsilon>0$, there exists an $A(\epsilon)>0$ such that
'"`UNIQ-MathJax6-QINU`"'
for all $R\geq A(\epsilon)$.
The following propositions are valid.
a) If $f(x,t)$ is continuous in a half-strip $[a\leq x<\infty,c<t\leq d]$ and if the integral \ref{*} is uniformly convergent in $t$ on $[c,d]$, then $J(t)$ is continuous in $c<t\leq d$.
b) If $f(x,t)$ and the derivative $\partial f(x,t)/\partial t$ are continuous in a half-strip $[a\leq x<\infty,c\leq t\leq d]$, if the integral \ref{*} is convergent for some $t\in[c,d]$ and if the integral
'"`UNIQ-MathJax7-QINU`"'
is uniformly convergent in $t$ on $[c,d]$, then the function $J(t)$ is differentiable on $[c,d]$ and its derivative may be evaluated by the formula
$$J'(t)=\int_a^\infty\frac{\partial f}{\partial t}(x,t)dx.$$
Analogous propositions hold for improper integrals of the second kind.
References
[1] | V.S. Vladimirov, "Equations of mathematical physics" , MIR (1984) (Translated from Russian) |
[2] | V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 2 , MIR (1982) (Translated from Russian) |
[3] | L.D. Kudryavtsev, "Mathematical analysis" , 2 , Moscow (1970) (In Russian) |
[4] | S.M. Nikol'skii, "A course of mathematical analysis" , 2 , MIR (1977) (Translated from Russian) |
[5] | A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
The propositions stated are simple consequences of Lebesgue's dominated convergence principle (see Lebesgue theorem 2)).