Namespaces
Variants
Actions

Difference between revisions of "Section"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex,MR,ZBL,MSC, refs)
Line 1: Line 1:
''section surface, of a [[Fibre space|fibre space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083730/s0837301.png" />''
+
{{MSC|14}}
 +
{{TEX|done}}
  
A continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083730/s0837302.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083730/s0837303.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083730/s0837304.png" /> is a [[Serre fibration|Serre fibration]], then
+
A ''section'' or
 +
''section surface'' of a
 +
surjective (continuous) map or of a
 +
[[Fibre space|fibre space]] $p:X\to Y$'' is
 +
a (continuous) mapping $s:Y\to X$ such that $p\circ s={\rm id}_Y$.  
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083730/s0837305.png" /></td> </tr></table>
+
If $(X,p,Y)$ is a
 +
[[Serre fibration|Serre fibration]], then
  
For a [[Principal fibre bundle|principal fibre bundle]] the existence of a section implies its triviality. A [[Vector bundle|vector bundle]] always possesses the so-called zero section.
+
$$\pi_n(X) = \pi_n(p^{-1}(pt))\oplus \pi_n(Y).$$
 +
For a
 +
[[Principal fibre bundle|principal fibre bundle]] the existence of a section implies its triviality. A
 +
[[Vector bundle|vector bundle]] always possesses the so-called zero section.
  
  
Line 13: Line 22:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)  pp. 77</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Sp}}||valign="top"| E.H. Spanier,  "Algebraic topology", McGraw-Hill  (1966)  pp. 77 {{MR|0210112}} {{MR|1325242}}  {{ZBL|0145.43303}}
 +
 
 +
|-
 +
|}

Revision as of 22:13, 24 November 2013

2020 Mathematics Subject Classification: Primary: 14-XX [MSN][ZBL]

A section or section surface of a surjective (continuous) map or of a fibre space $p:X\to Y$ is a (continuous) mapping $s:Y\to X$ such that $p\circ s={\rm id}_Y$.

If $(X,p,Y)$ is a Serre fibration, then

$$\pi_n(X) = \pi_n(p^{-1}(pt))\oplus \pi_n(Y).$$ For a principal fibre bundle the existence of a section implies its triviality. A vector bundle always possesses the so-called zero section.


Comments

References

[Sp] E.H. Spanier, "Algebraic topology", McGraw-Hill (1966) pp. 77 MR0210112 MR1325242 Zbl 0145.43303
How to Cite This Entry:
Section. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Section&oldid=18525
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article