|
|
Line 1: |
Line 1: |
− | A [[Compact space|compact space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202501.png" />, embedded in the [[Hilbert cube|Hilbert cube]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202502.png" />, is movable provided every neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202503.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202504.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202505.png" /> admits a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202506.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202507.png" /> such that, for any other neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202508.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m1202509.png" />, there exists a [[Homotopy|homotopy]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025010.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025012.png" />. In other words, sufficiently small neighbourhoods of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025013.png" /> can be deformed arbitrarily close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025014.png" /> [[#References|[a2]]]. K. Borsuk proved that movability is a shape invariant. The solenoids (cf. [[Solenoid|Solenoid]]) are examples of non-movable continua.
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| + | |
| + | Out of 53 formulas, 53 were replaced by TEX code.--> |
| + | |
| + | {{TEX|semi-auto}}{{TEX|done}} |
| + | A [[Compact space|compact space]] $X$, embedded in the [[Hilbert cube|Hilbert cube]] $Q$, is movable provided every neighbourhood $U$ of $X$ in $Q$ admits a neighbourhood $U ^ { \prime }$ of $X$ such that, for any other neighbourhood $U ^ { \prime \prime } \subseteq U$ of $X$, there exists a [[Homotopy|homotopy]] $H : U ^ { \prime } \times I \rightarrow U$ with $H _ { 0 } | _ { U ^ { \prime } } = \operatorname{id}$, $H _ { 1 } ( U ^ { \prime } ) \subseteq U ^ { \prime \prime }$. In other words, sufficiently small neighbourhoods of $X$ can be deformed arbitrarily close to $X$ [[#References|[a2]]]. K. Borsuk proved that movability is a shape invariant. The solenoids (cf. [[Solenoid|Solenoid]]) are examples of non-movable continua. |
| | | |
| The question whether movable continua are always pointed movable is still (1998) open. | | The question whether movable continua are always pointed movable is still (1998) open. |
| | | |
− | For movable spaces various shape-theoretic results assume simpler form. E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025015.png" /> is a pointed shape morphism between pointed movable metric continua (cf. also [[Pointed space|Pointed space]]; [[Continuum|Continuum]]; [[Shape theory|Shape theory]]), which induces isomorphisms of the shape groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025016.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025017.png" /> and if the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025019.png" /> are finite-dimensional, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025020.png" /> is a pointed shape equivalence. This is a consequence of the shape-theoretic Whitehead theorem (cf. also [[Homotopy type|Homotopy type]]; [[Homotopy group|Homotopy group]]) and the fact that such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025021.png" /> induces isomorphisms of homotopy pro-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025022.png" /> [[#References|[a6]]], [[#References|[a5]]]. | + | For movable spaces various shape-theoretic results assume simpler form. E.g., if $f : ( X , * ) \rightarrow ( Y , * )$ is a pointed shape morphism between pointed movable metric continua (cf. also [[Pointed space|Pointed space]]; [[Continuum|Continuum]]; [[Shape theory|Shape theory]]), which induces isomorphisms of the shape groups $f _ { \# } : \check{\pi} _ { k } ( X , * ) \rightarrow \check{\pi} _ { k } ( Y , * )$, for all $k$ and if the spaces $X$, $Y$ are finite-dimensional, then $f$ is a pointed shape equivalence. This is a consequence of the shape-theoretic Whitehead theorem (cf. also [[Homotopy type|Homotopy type]]; [[Homotopy group|Homotopy group]]) and the fact that such an $f$ induces isomorphisms of homotopy pro-groups $\pi _ { k } ( \mathcal{X} , * ) \rightarrow \pi _ { k } ( \mathcal{Y} , * )$ [[#References|[a6]]], [[#References|[a5]]]. |
| | | |
− | Borsuk also introduced the notion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025023.png" />-movability. A compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025024.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025026.png" />-movable provided every neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025028.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025029.png" /> admits a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025030.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025032.png" /> such that, for any neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025034.png" />, any compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025035.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025036.png" /> and any mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025037.png" />, there exists a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025038.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025040.png" /> are homotopic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025041.png" />. Clearly, if a compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025042.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025043.png" />-movable and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025044.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025045.png" /> is movable. Moreover, every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025047.png" />-compactum is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025048.png" />-movable [[#References|[a3]]]. The notion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025049.png" />-movability was the beginning of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025051.png" />-shape theory, which was especially developed by A.Ch. Chigogidze [[#References|[a4]]] (cf. also [[Shape theory|Shape theory]]). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025052.png" />-shape theory is an important tool in the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025053.png" />-dimensional Menger manifolds, developed by M. Bestvina [[#References|[a1]]]. | + | Borsuk also introduced the notion of $n$-movability. A compactum $X \subseteq { Q }$ is $n$-movable provided every neighbourhood $U$ of $X$ in $Q$ admits a neighbourhood $U ^ { \prime }$ of $X$ in $Q$ such that, for any neighbourhood $U ^ { \prime \prime } \subseteq U$ of $X$, any compactum $K$ of dimension $\operatorname { dim} K \leq n$ and any mapping $f : K \rightarrow U ^ { \prime }$, there exists a mapping $g : K \rightarrow U ^ { \prime \prime }$ such that $f$ and $g$ are homotopic in $U$. Clearly, if a compactum $X$ is $n$-movable and $\operatorname{dim} X \leq n$, then $X$ is movable. Moreover, every $L C ^ { n - 1 }$-compactum is $n$-movable [[#References|[a3]]]. The notion of $n$-movability was the beginning of the $n$-shape theory, which was especially developed by A.Ch. Chigogidze [[#References|[a4]]] (cf. also [[Shape theory|Shape theory]]). The $n$-shape theory is an important tool in the theory of $n$-dimensional Menger manifolds, developed by M. Bestvina [[#References|[a1]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Bestvina, "Characterizing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025054.png" />-dimensional universal Menger compacta" ''Memoirs Amer. Math. Soc.'' , '''71''' : 380 (1988) pp. 1–110</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> K. Borsuk, "On movable compacta" ''Fund. Math.'' , '''66''' (1969) pp. 137–146</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Borsuk, "On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025055.png" />-movability" ''Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys.'' , '''20''' (1972) pp. 859–864</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.Ch. Chigogidze, "Theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025056.png" />-shape" ''Uspekhi Mat. Nauk'' , '''44''' : 5 (1989) pp. 117–140 (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Dydak, "The Whitehead and the Smale theorems in shape theory" ''Dissert. Math.'' , '''156''' (1979) pp. 1–55</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J.E. Keesling, "On the Whitehead theorem in shape theory" ''Fund. Math.'' , '''92''' (1976) pp. 247–253</TD></TR></table> | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> M. Bestvina, "Characterizing $k$-dimensional universal Menger compacta" ''Memoirs Amer. Math. Soc.'' , '''71''' : 380 (1988) pp. 1–110</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> K. Borsuk, "On movable compacta" ''Fund. Math.'' , '''66''' (1969) pp. 137–146</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> K. Borsuk, "On the $n$-movability" ''Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys.'' , '''20''' (1972) pp. 859–864</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> A.Ch. Chigogidze, "Theory of $n$-shape" ''Uspekhi Mat. Nauk'' , '''44''' : 5 (1989) pp. 117–140 (In Russian)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> J. Dydak, "The Whitehead and the Smale theorems in shape theory" ''Dissert. Math.'' , '''156''' (1979) pp. 1–55</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> J.E. Keesling, "On the Whitehead theorem in shape theory" ''Fund. Math.'' , '''92''' (1976) pp. 247–253</td></tr></table> |
A compact space $X$, embedded in the Hilbert cube $Q$, is movable provided every neighbourhood $U$ of $X$ in $Q$ admits a neighbourhood $U ^ { \prime }$ of $X$ such that, for any other neighbourhood $U ^ { \prime \prime } \subseteq U$ of $X$, there exists a homotopy $H : U ^ { \prime } \times I \rightarrow U$ with $H _ { 0 } | _ { U ^ { \prime } } = \operatorname{id}$, $H _ { 1 } ( U ^ { \prime } ) \subseteq U ^ { \prime \prime }$. In other words, sufficiently small neighbourhoods of $X$ can be deformed arbitrarily close to $X$ [a2]. K. Borsuk proved that movability is a shape invariant. The solenoids (cf. Solenoid) are examples of non-movable continua.
The question whether movable continua are always pointed movable is still (1998) open.
For movable spaces various shape-theoretic results assume simpler form. E.g., if $f : ( X , * ) \rightarrow ( Y , * )$ is a pointed shape morphism between pointed movable metric continua (cf. also Pointed space; Continuum; Shape theory), which induces isomorphisms of the shape groups $f _ { \# } : \check{\pi} _ { k } ( X , * ) \rightarrow \check{\pi} _ { k } ( Y , * )$, for all $k$ and if the spaces $X$, $Y$ are finite-dimensional, then $f$ is a pointed shape equivalence. This is a consequence of the shape-theoretic Whitehead theorem (cf. also Homotopy type; Homotopy group) and the fact that such an $f$ induces isomorphisms of homotopy pro-groups $\pi _ { k } ( \mathcal{X} , * ) \rightarrow \pi _ { k } ( \mathcal{Y} , * )$ [a6], [a5].
Borsuk also introduced the notion of $n$-movability. A compactum $X \subseteq { Q }$ is $n$-movable provided every neighbourhood $U$ of $X$ in $Q$ admits a neighbourhood $U ^ { \prime }$ of $X$ in $Q$ such that, for any neighbourhood $U ^ { \prime \prime } \subseteq U$ of $X$, any compactum $K$ of dimension $\operatorname { dim} K \leq n$ and any mapping $f : K \rightarrow U ^ { \prime }$, there exists a mapping $g : K \rightarrow U ^ { \prime \prime }$ such that $f$ and $g$ are homotopic in $U$. Clearly, if a compactum $X$ is $n$-movable and $\operatorname{dim} X \leq n$, then $X$ is movable. Moreover, every $L C ^ { n - 1 }$-compactum is $n$-movable [a3]. The notion of $n$-movability was the beginning of the $n$-shape theory, which was especially developed by A.Ch. Chigogidze [a4] (cf. also Shape theory). The $n$-shape theory is an important tool in the theory of $n$-dimensional Menger manifolds, developed by M. Bestvina [a1].
References
[a1] | M. Bestvina, "Characterizing $k$-dimensional universal Menger compacta" Memoirs Amer. Math. Soc. , 71 : 380 (1988) pp. 1–110 |
[a2] | K. Borsuk, "On movable compacta" Fund. Math. , 66 (1969) pp. 137–146 |
[a3] | K. Borsuk, "On the $n$-movability" Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. , 20 (1972) pp. 859–864 |
[a4] | A.Ch. Chigogidze, "Theory of $n$-shape" Uspekhi Mat. Nauk , 44 : 5 (1989) pp. 117–140 (In Russian) |
[a5] | J. Dydak, "The Whitehead and the Smale theorems in shape theory" Dissert. Math. , 156 (1979) pp. 1–55 |
[a6] | J.E. Keesling, "On the Whitehead theorem in shape theory" Fund. Math. , 92 (1976) pp. 247–253 |