Difference between revisions of "Yoke"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex done) |
||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
− | + | The concept of a yoke, introduced in [[#References|[a3]]], is of great importance in relation to geometric, i.e. parametrization invariant, calculations on statistical models (cf. also [[Differential geometry in statistical inference|Differential geometry in statistical inference]]; [[Statistical manifold|Statistical manifold]]). A yoke on a model $ M $ | |
+ | induces a metric and families of connections, derivative strings and tensors on $ M $ | ||
+ | in terms of which geometric properties of $ M $ | ||
+ | may be formulated, see [[#References|[a5]]]. Differences and similarities between the expected and observed geometry of $ M $ | ||
+ | may be discussed using yokes, see [[#References|[a5]]]. Furthermore, invariant Taylor expansions of functions defined on $ M $ | ||
+ | are obtainable via yokes. Finally, a relationship between yokes and symplectic forms has been established in [[#References|[a4]]]. | ||
− | + | In order to define a yoke, let $ M $ | |
+ | be a smooth $ d $- | ||
+ | dimensional [[Manifold|manifold]] and let $ \omega = ( \omega ^ {1} \dots \omega ^ {d} ) $ | ||
+ | and, correspondingly, $ ( \omega, \omega ^ \prime ) = ( \omega ^ {1} \dots \omega ^ {d} , \omega ^ {\prime 1 } \dots \omega ^ {\prime d } ) $ | ||
+ | denote local coordinates on $ M $ | ||
+ | and $ M \times M $, | ||
+ | respectively. Arbitrary components of $ \omega $ | ||
+ | will be denoted by the letters $ i,j,k,m, \dots $. | ||
+ | For two sets of indices $ K _ {t} = k _ {1} \dots k _ {t} $ | ||
+ | and $ M _ {u} = m _ {1} \dots m _ {u} $ | ||
+ | and a smooth function $ g : {M \times M } \rightarrow \mathbf R $, | ||
+ | the symbol $ /g _ {K _ {t} ;M _ {u} } $ | ||
+ | is used for the values of the function | ||
− | + | $$ | |
+ | g _ {K _ {t} ;M _ {u} } ( \omega, \omega ^ \prime ) = { | ||
+ | \frac{\partial ^ {t + u } g ( \omega, \omega ^ \prime ) }{\partial \omega ^ {k _ {1} } \dots \partial \omega ^ {k _ {t} } \partial \omega ^ {\prime m _ {1} } \dots \partial \omega ^ {\prime m _ {u} } } | ||
+ | } | ||
+ | $$ | ||
− | + | evaluated at the diagonal of $ M \times M $, | |
+ | i.e. | ||
− | + | $$ | |
+ | /g _ {K _ {t} ;M _ {u} } ( \omega ) = g _ {K _ {t} ;M _ {u} } ( \omega, \omega ) . | ||
+ | $$ | ||
− | + | With this notation, a yoke is a smooth function $ g : {M \times M } \rightarrow R $, | |
+ | such that for every $ \omega \in M $: | ||
− | + | i) $ /g _ {i; } ( \omega ) = 0 $; | |
− | + | ii) the matrix $ [ /g _ {i;j } ( \omega ) ] $ | |
+ | is non-singular. | ||
− | + | A normalized yoke is a yoke satisfying the additional condition $ g ( \omega, \omega ) = 0 $. | |
+ | For any yoke $ g $ | ||
+ | there exists a corresponding normalized yoke $ {\overline{g}\; } $, | ||
+ | given by $ {\overline{g}\; } ( \omega, \omega ^ \prime ) = g ( \omega, \omega ^ \prime ) - g ( \omega ^ \prime , \omega ^ \prime ) $, | ||
+ | and a dual yoke $ g ^ {*} $, | ||
+ | given by $ g ^ {*} ( \omega, \omega ^ \prime ) = {\overline{g}\; } ( \omega ^ \prime , \omega ) $. | ||
− | + | In the statistical context the two most important examples of normalized yokes are the expected and the observed likelihood yoke. For a parametric statistical model with parameter space $ M $, | |
+ | sample space $ {\mathcal X} $ | ||
+ | and log-likelihood function $ l : {M \times {\mathcal X} } \rightarrow \mathbf R $, | ||
+ | the expected likelihood yoke is given by | ||
+ | |||
+ | $$ | ||
+ | g ( \omega, \omega ^ \prime ) = {\mathsf E} _ {\omega ^ \prime } \{ l ( \omega ;x ) - l ( \omega ^ \prime ;x ) \} . | ||
+ | $$ | ||
The observed likelihood yoke is given by | The observed likelihood yoke is given by | ||
− | + | $$ | |
+ | g ( \omega, \omega ^ \prime ) = l ( \omega ; \omega ^ \prime ,a ) - l ( \omega ^ \prime ; \omega ^ \prime ,a ) . | ||
+ | $$ | ||
− | Here, | + | Here, $ a $ |
+ | is an auxiliary statistic such that the function $ x \rightarrow ( {\widehat \omega } ,a ) $, | ||
+ | where $ {\widehat \omega } $ | ||
+ | denotes the maximum-likelihood estimator of $ \omega $( | ||
+ | cf. also [[Maximum-likelihood method|Maximum-likelihood method]]), is bijective. Further examples of statistical yokes are related to contrast functions, see [[#References|[a5]]]. | ||
− | Some further notation is needed for the discussion of properties of yokes. If | + | Some further notation is needed for the discussion of properties of yokes. If $ f : M \rightarrow \mathbf R $ |
+ | is a smooth function, one sets | ||
− | + | $$ | |
+ | f _ {/K _ {t} } = { | ||
+ | \frac{\partial ^ {t} f ( \omega ) }{\partial \omega ^ {k _ {1} } \dots \partial \omega ^ {k _ {t} } } | ||
+ | } . | ||
+ | $$ | ||
− | Furthermore, if | + | Furthermore, if $ \psi = ( \psi ^ {1} \dots \psi ^ {d} ) $ |
+ | is an alternative set of local coordinates for which arbitrary components are denoted by the letters $ a,b,c,d, \dots $ | ||
+ | and if for $ t, \tau = 1,2, \dots $ | ||
+ | $ C _ {t} $ | ||
+ | and $ K _ \tau $ | ||
+ | are two sets of indices related to the local coordinates $ \psi $ | ||
+ | and $ \omega $, | ||
+ | respectively, one sets | ||
− | + | $$ | |
+ | \omega _ {C _ {t} } ^ {K _ \tau } = \sum _ {C _ {t} / \tau } \omega _ {/C _ {t1 } } ^ {k _ {1} } \dots \omega _ {/C _ {t \tau } } ^ {k _ \tau } . | ||
+ | $$ | ||
− | Here, the summation is over ordered partitions of | + | Here, the summation is over ordered partitions of $ C _ {t} = c _ {1} \dots c _ {t} $ |
+ | into $ \tau $( | ||
+ | non-empty) subsets $ C _ {t1 } \dots C _ {t \tau } $ | ||
+ | such that the order of the indices in each of the subsets is the same as the order within $ C _ {t} $ | ||
+ | and such that for $ \mu = 1 \dots \tau - 1 $ | ||
+ | the first index of $ C _ {t \mu } $ | ||
+ | comes before the first index of $ C _ {t, \mu + 1 } $ | ||
+ | as compared with the ordering within $ C _ {t} $. | ||
+ | For $ \tau > t $, | ||
+ | the sum is to be interpreted as $ 0 $. | ||
− | Let | + | Let $ g $ |
+ | be an arbitrary yoke and let $ /g _ {;} = \{ {/g _ {K _ {t} ;M _ {u} } } : {t,u = 1,2, \dots } \} $. | ||
+ | Then the most important properties of $ g $ | ||
+ | are: | ||
− | a) | + | a) $ /g _ {;} $ |
+ | satisfies the balance relation | ||
− | + | $$ | |
+ | /g _ {K _ {t} ; } + \sum _ {K _ {t} /2 } /g _ {K _ {t1 } ;K _ {t2 } } = 0. | ||
+ | $$ | ||
− | b) | + | b) $ /g _ {;} $ |
+ | is a double derivative string, i.e. the transformation law is | ||
− | + | $$ | |
+ | /g _ {C _ {t} ;D _ {u} } = \sum _ {\tau = 1 } ^ { t } \sum _ {\nu = 1 } ^ { u } /g _ {K _ \tau ;M _ \nu } \omega _ {/C _ {t} } ^ {K _ \tau } \omega _ {/D _ {u} } ^ {M _ \nu } . | ||
+ | $$ | ||
− | In particular, | + | In particular, $ /g _ {i;j } $ |
+ | is a symmetric non-singular $ ( 0,2 ) $- | ||
+ | tensor, and consequently $ M $ | ||
+ | equipped with this metric is a [[Riemannian manifold|Riemannian manifold]]. The inverse of the matrix $ [ /g _ {i;j } ] $ | ||
+ | will be denoted by $ [ /g ^ {i;j } ] $. | ||
− | c) For | + | c) For $ \alpha \in \mathbf R $ |
+ | the collection of arrays $ {\Gamma ^ \alpha } = \{ { {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {i} } : {t = 1,2, \dots } \} $, | ||
+ | where | ||
− | + | $$ | |
+ | {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {i} = \left \{ { | ||
+ | \frac{1 + \alpha }{2} | ||
+ | } /g _ {K _ {t} ;j } + { | ||
+ | \frac{1 - \alpha }{2} | ||
+ | } /g _ {j;K _ {t} } \right \} /g ^ {i;j } | ||
+ | $$ | ||
− | is a connection string, i.e. | + | is a connection string, i.e. $ {\Gamma ^ \alpha } $ |
+ | satisfies the transformation law | ||
− | + | $$ | |
+ | {\Gamma ^ \alpha } {} _ {C _ {t} } ^ {a} = \left \{ \sum _ {\tau = 1 } ^ { t } {\Gamma ^ \alpha } {} _ {K _ \tau } ^ {i} \omega _ {/C _ {t} } ^ | ||
+ | {K _ \tau } \right \} \psi _ {/i } ^ {a} . | ||
+ | $$ | ||
− | In particular, | + | In particular, $ {\Gamma ^ \alpha } {} _ {k _ {1} k _ {2} } ^ {i} $ |
+ | is the (upper) [[Christoffel symbol|Christoffel symbol]] of a torsion-free [[Affine connection|affine connection]], the so-called $ \alpha $- | ||
+ | connection, $ {\nabla ^ \alpha } $ | ||
+ | corresponding to the yoke $ g $. | ||
− | The expected and observed | + | The expected and observed $ \alpha $- |
+ | geometries, see [[#References|[a1]]] and [[#References|[a2]]], are those corresponding to the expected and observed likelihood yokes, respectively. | ||
− | d) For | + | d) For $ \alpha \in \mathbf R $ |
+ | there exists a sequence of tensors $ {T ^ \alpha } _ {;} = \{ { {T ^ \alpha } _ {I _ \tau ;J _ \upsilon } } : {\tau, \upsilon = 1,2, \dots } \} , $ | ||
+ | such that $ {T ^ \alpha } _ {I _ \tau ;J _ \upsilon } $ | ||
+ | is a covariant tensor of degree $ \tau + \upsilon $. | ||
+ | The quantities $ {T ^ \alpha } _ {;} $ | ||
+ | are referred to as the tensorial components of $ /g _ {;} $ | ||
+ | with respect to $ {\Gamma ^ \alpha } $ | ||
+ | and are obtained by intertwining $ /g _ {;} $ | ||
+ | and $ {\Gamma ^ \alpha } $, | ||
+ | i.e. determined recursively by the equations | ||
− | + | $$ | |
+ | /g _ {K _ {t} ;M _ {u} } = \sum _ {\tau = 1 } ^ { t } \sum _ {\nu = 1 } ^ { u } {T ^ \alpha } _ {I _ \tau ;J _ \upsilon } {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {I _ \tau } {\Gamma ^ \alpha } {} _ {M _ {u} } ^ {J _ \upsilon } , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {I _ \tau } = \sum _ {K _ {t} / \tau } {\Gamma ^ \alpha } {} _ {K _ {t1 } } ^ {i _ {1} } \dots {\Gamma ^ \alpha } {} _ {K _ {t \tau } } ^ {i _ \tau } . | ||
+ | $$ | ||
− | In terms of the local coordinates | + | In terms of the local coordinates $ \omega $, |
+ | an invariant Taylor expansion, around $ m \in M $ | ||
+ | or $ \omega ^ \prime = \omega ^ \prime ( m ) $, | ||
+ | of a smooth function $ f $ | ||
+ | is of the form | ||
− | + | $$ | |
+ | f ( \omega ) = f ( \omega ^ \prime ) + \sum _ {\tau = 1 } ^ \infty { | ||
+ | \frac{1}{\tau ! } | ||
+ | } {f ^ { 1 } } _ {//I _ \tau } ( \omega ^ \prime ) \gamma ^ {I _ \tau } , | ||
+ | $$ | ||
− | where | + | where $ \{ { {f ^ { 1 } } _ {//I _ \tau } } : {\tau = 1,2, \dots } \} $ |
+ | are the tensorial components of the derivatives $ \{ {f _ {/K _ {t} } } : {\tau = 1,2, \dots } \} $ | ||
+ | with respect to the connection string $ {\Gamma ^ { 1 } } $ | ||
+ | given recursively by | ||
− | + | $$ | |
+ | f _ {/K _ {t} } = \sum _ {\tau = 1 } ^ { t } {f ^ { 1 } } _ {//I _ \tau } {\Gamma ^ { 1 } } {} _ {K _ {t} } ^ {I _ \tau } . | ||
+ | $$ | ||
− | Furthermore, | + | Furthermore, $ \gamma ^ {I _ \tau } = \gamma ^ {i _ {1} } \dots \gamma ^ {i _ \tau } $, |
+ | where $ \gamma $ | ||
+ | indicates the extended normal coordinates around $ m $ | ||
+ | whose components are given by | ||
− | + | $$ | |
+ | \gamma ^ {i} ( \omega ) = {\overline{g}\; } _ {;j } ( \omega, \omega ^ \prime ) /g ^ {i;j } , | ||
+ | $$ | ||
− | + | $ {\overline{g}\; } $ | |
+ | being the normalized yoke corresponding to $ g $ | ||
+ | and $ \omega ^ \prime = \omega ^ \prime ( m ) $. | ||
− | The Taylor expansion is invariant in the sense that | + | The Taylor expansion is invariant in the sense that $ {f ^ { 1 } } _ {//I _ \tau } $ |
+ | and $ \gamma ^ {I _ \tau } $ | ||
+ | are tensors. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S-I. Amari, "Differential-geometrical methods in statistics" , ''Lecture Notes in Statistics'' , '''28''' , Springer (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O.E. Barndorff-Nielsen, "Likelihood and observed geometries" ''Ann. Stat.'' , '''14''' (1986) pp. 856–873</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> O.E. Barndorff-Nielsen, "Differential geometry and statistics. Some mathematical aspects" ''Indian J. Math. (Ramanujan Centenary Volume)'' , '''29''' (1987) pp. 335–350</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> O.E. Barndorff-Nielsen, P.E Jupp, "Statistics, yokes and symplectic geometry" ''Ann. Toulouse'' , '''to appear''' (1997)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P. Blæsild, "Yokes and tensors derived from yokes" ''Ann. Inst. Statist. Math.'' , '''43''' (1991) pp. 95–113</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S-I. Amari, "Differential-geometrical methods in statistics" , ''Lecture Notes in Statistics'' , '''28''' , Springer (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O.E. Barndorff-Nielsen, "Likelihood and observed geometries" ''Ann. Stat.'' , '''14''' (1986) pp. 856–873</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> O.E. Barndorff-Nielsen, "Differential geometry and statistics. Some mathematical aspects" ''Indian J. Math. (Ramanujan Centenary Volume)'' , '''29''' (1987) pp. 335–350</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> O.E. Barndorff-Nielsen, P.E Jupp, "Statistics, yokes and symplectic geometry" ''Ann. Toulouse'' , '''to appear''' (1997)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P. Blæsild, "Yokes and tensors derived from yokes" ''Ann. Inst. Statist. Math.'' , '''43''' (1991) pp. 95–113</TD></TR></table> |
Latest revision as of 12:10, 11 February 2020
The concept of a yoke, introduced in [a3], is of great importance in relation to geometric, i.e. parametrization invariant, calculations on statistical models (cf. also Differential geometry in statistical inference; Statistical manifold). A yoke on a model $ M $
induces a metric and families of connections, derivative strings and tensors on $ M $
in terms of which geometric properties of $ M $
may be formulated, see [a5]. Differences and similarities between the expected and observed geometry of $ M $
may be discussed using yokes, see [a5]. Furthermore, invariant Taylor expansions of functions defined on $ M $
are obtainable via yokes. Finally, a relationship between yokes and symplectic forms has been established in [a4].
In order to define a yoke, let $ M $ be a smooth $ d $- dimensional manifold and let $ \omega = ( \omega ^ {1} \dots \omega ^ {d} ) $ and, correspondingly, $ ( \omega, \omega ^ \prime ) = ( \omega ^ {1} \dots \omega ^ {d} , \omega ^ {\prime 1 } \dots \omega ^ {\prime d } ) $ denote local coordinates on $ M $ and $ M \times M $, respectively. Arbitrary components of $ \omega $ will be denoted by the letters $ i,j,k,m, \dots $. For two sets of indices $ K _ {t} = k _ {1} \dots k _ {t} $ and $ M _ {u} = m _ {1} \dots m _ {u} $ and a smooth function $ g : {M \times M } \rightarrow \mathbf R $, the symbol $ /g _ {K _ {t} ;M _ {u} } $ is used for the values of the function
$$ g _ {K _ {t} ;M _ {u} } ( \omega, \omega ^ \prime ) = { \frac{\partial ^ {t + u } g ( \omega, \omega ^ \prime ) }{\partial \omega ^ {k _ {1} } \dots \partial \omega ^ {k _ {t} } \partial \omega ^ {\prime m _ {1} } \dots \partial \omega ^ {\prime m _ {u} } } } $$
evaluated at the diagonal of $ M \times M $, i.e.
$$ /g _ {K _ {t} ;M _ {u} } ( \omega ) = g _ {K _ {t} ;M _ {u} } ( \omega, \omega ) . $$
With this notation, a yoke is a smooth function $ g : {M \times M } \rightarrow R $, such that for every $ \omega \in M $:
i) $ /g _ {i; } ( \omega ) = 0 $;
ii) the matrix $ [ /g _ {i;j } ( \omega ) ] $ is non-singular.
A normalized yoke is a yoke satisfying the additional condition $ g ( \omega, \omega ) = 0 $. For any yoke $ g $ there exists a corresponding normalized yoke $ {\overline{g}\; } $, given by $ {\overline{g}\; } ( \omega, \omega ^ \prime ) = g ( \omega, \omega ^ \prime ) - g ( \omega ^ \prime , \omega ^ \prime ) $, and a dual yoke $ g ^ {*} $, given by $ g ^ {*} ( \omega, \omega ^ \prime ) = {\overline{g}\; } ( \omega ^ \prime , \omega ) $.
In the statistical context the two most important examples of normalized yokes are the expected and the observed likelihood yoke. For a parametric statistical model with parameter space $ M $, sample space $ {\mathcal X} $ and log-likelihood function $ l : {M \times {\mathcal X} } \rightarrow \mathbf R $, the expected likelihood yoke is given by
$$ g ( \omega, \omega ^ \prime ) = {\mathsf E} _ {\omega ^ \prime } \{ l ( \omega ;x ) - l ( \omega ^ \prime ;x ) \} . $$
The observed likelihood yoke is given by
$$ g ( \omega, \omega ^ \prime ) = l ( \omega ; \omega ^ \prime ,a ) - l ( \omega ^ \prime ; \omega ^ \prime ,a ) . $$
Here, $ a $ is an auxiliary statistic such that the function $ x \rightarrow ( {\widehat \omega } ,a ) $, where $ {\widehat \omega } $ denotes the maximum-likelihood estimator of $ \omega $( cf. also Maximum-likelihood method), is bijective. Further examples of statistical yokes are related to contrast functions, see [a5].
Some further notation is needed for the discussion of properties of yokes. If $ f : M \rightarrow \mathbf R $ is a smooth function, one sets
$$ f _ {/K _ {t} } = { \frac{\partial ^ {t} f ( \omega ) }{\partial \omega ^ {k _ {1} } \dots \partial \omega ^ {k _ {t} } } } . $$
Furthermore, if $ \psi = ( \psi ^ {1} \dots \psi ^ {d} ) $ is an alternative set of local coordinates for which arbitrary components are denoted by the letters $ a,b,c,d, \dots $ and if for $ t, \tau = 1,2, \dots $ $ C _ {t} $ and $ K _ \tau $ are two sets of indices related to the local coordinates $ \psi $ and $ \omega $, respectively, one sets
$$ \omega _ {C _ {t} } ^ {K _ \tau } = \sum _ {C _ {t} / \tau } \omega _ {/C _ {t1 } } ^ {k _ {1} } \dots \omega _ {/C _ {t \tau } } ^ {k _ \tau } . $$
Here, the summation is over ordered partitions of $ C _ {t} = c _ {1} \dots c _ {t} $ into $ \tau $( non-empty) subsets $ C _ {t1 } \dots C _ {t \tau } $ such that the order of the indices in each of the subsets is the same as the order within $ C _ {t} $ and such that for $ \mu = 1 \dots \tau - 1 $ the first index of $ C _ {t \mu } $ comes before the first index of $ C _ {t, \mu + 1 } $ as compared with the ordering within $ C _ {t} $. For $ \tau > t $, the sum is to be interpreted as $ 0 $.
Let $ g $ be an arbitrary yoke and let $ /g _ {;} = \{ {/g _ {K _ {t} ;M _ {u} } } : {t,u = 1,2, \dots } \} $. Then the most important properties of $ g $ are:
a) $ /g _ {;} $ satisfies the balance relation
$$ /g _ {K _ {t} ; } + \sum _ {K _ {t} /2 } /g _ {K _ {t1 } ;K _ {t2 } } = 0. $$
b) $ /g _ {;} $ is a double derivative string, i.e. the transformation law is
$$ /g _ {C _ {t} ;D _ {u} } = \sum _ {\tau = 1 } ^ { t } \sum _ {\nu = 1 } ^ { u } /g _ {K _ \tau ;M _ \nu } \omega _ {/C _ {t} } ^ {K _ \tau } \omega _ {/D _ {u} } ^ {M _ \nu } . $$
In particular, $ /g _ {i;j } $ is a symmetric non-singular $ ( 0,2 ) $- tensor, and consequently $ M $ equipped with this metric is a Riemannian manifold. The inverse of the matrix $ [ /g _ {i;j } ] $ will be denoted by $ [ /g ^ {i;j } ] $.
c) For $ \alpha \in \mathbf R $ the collection of arrays $ {\Gamma ^ \alpha } = \{ { {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {i} } : {t = 1,2, \dots } \} $, where
$$ {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {i} = \left \{ { \frac{1 + \alpha }{2} } /g _ {K _ {t} ;j } + { \frac{1 - \alpha }{2} } /g _ {j;K _ {t} } \right \} /g ^ {i;j } $$
is a connection string, i.e. $ {\Gamma ^ \alpha } $ satisfies the transformation law
$$ {\Gamma ^ \alpha } {} _ {C _ {t} } ^ {a} = \left \{ \sum _ {\tau = 1 } ^ { t } {\Gamma ^ \alpha } {} _ {K _ \tau } ^ {i} \omega _ {/C _ {t} } ^ {K _ \tau } \right \} \psi _ {/i } ^ {a} . $$
In particular, $ {\Gamma ^ \alpha } {} _ {k _ {1} k _ {2} } ^ {i} $ is the (upper) Christoffel symbol of a torsion-free affine connection, the so-called $ \alpha $- connection, $ {\nabla ^ \alpha } $ corresponding to the yoke $ g $.
The expected and observed $ \alpha $- geometries, see [a1] and [a2], are those corresponding to the expected and observed likelihood yokes, respectively.
d) For $ \alpha \in \mathbf R $ there exists a sequence of tensors $ {T ^ \alpha } _ {;} = \{ { {T ^ \alpha } _ {I _ \tau ;J _ \upsilon } } : {\tau, \upsilon = 1,2, \dots } \} , $ such that $ {T ^ \alpha } _ {I _ \tau ;J _ \upsilon } $ is a covariant tensor of degree $ \tau + \upsilon $. The quantities $ {T ^ \alpha } _ {;} $ are referred to as the tensorial components of $ /g _ {;} $ with respect to $ {\Gamma ^ \alpha } $ and are obtained by intertwining $ /g _ {;} $ and $ {\Gamma ^ \alpha } $, i.e. determined recursively by the equations
$$ /g _ {K _ {t} ;M _ {u} } = \sum _ {\tau = 1 } ^ { t } \sum _ {\nu = 1 } ^ { u } {T ^ \alpha } _ {I _ \tau ;J _ \upsilon } {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {I _ \tau } {\Gamma ^ \alpha } {} _ {M _ {u} } ^ {J _ \upsilon } , $$
where
$$ {\Gamma ^ \alpha } {} _ {K _ {t} } ^ {I _ \tau } = \sum _ {K _ {t} / \tau } {\Gamma ^ \alpha } {} _ {K _ {t1 } } ^ {i _ {1} } \dots {\Gamma ^ \alpha } {} _ {K _ {t \tau } } ^ {i _ \tau } . $$
In terms of the local coordinates $ \omega $, an invariant Taylor expansion, around $ m \in M $ or $ \omega ^ \prime = \omega ^ \prime ( m ) $, of a smooth function $ f $ is of the form
$$ f ( \omega ) = f ( \omega ^ \prime ) + \sum _ {\tau = 1 } ^ \infty { \frac{1}{\tau ! } } {f ^ { 1 } } _ {//I _ \tau } ( \omega ^ \prime ) \gamma ^ {I _ \tau } , $$
where $ \{ { {f ^ { 1 } } _ {//I _ \tau } } : {\tau = 1,2, \dots } \} $ are the tensorial components of the derivatives $ \{ {f _ {/K _ {t} } } : {\tau = 1,2, \dots } \} $ with respect to the connection string $ {\Gamma ^ { 1 } } $ given recursively by
$$ f _ {/K _ {t} } = \sum _ {\tau = 1 } ^ { t } {f ^ { 1 } } _ {//I _ \tau } {\Gamma ^ { 1 } } {} _ {K _ {t} } ^ {I _ \tau } . $$
Furthermore, $ \gamma ^ {I _ \tau } = \gamma ^ {i _ {1} } \dots \gamma ^ {i _ \tau } $, where $ \gamma $ indicates the extended normal coordinates around $ m $ whose components are given by
$$ \gamma ^ {i} ( \omega ) = {\overline{g}\; } _ {;j } ( \omega, \omega ^ \prime ) /g ^ {i;j } , $$
$ {\overline{g}\; } $ being the normalized yoke corresponding to $ g $ and $ \omega ^ \prime = \omega ^ \prime ( m ) $.
The Taylor expansion is invariant in the sense that $ {f ^ { 1 } } _ {//I _ \tau } $ and $ \gamma ^ {I _ \tau } $ are tensors.
References
[a1] | S-I. Amari, "Differential-geometrical methods in statistics" , Lecture Notes in Statistics , 28 , Springer (1985) |
[a2] | O.E. Barndorff-Nielsen, "Likelihood and observed geometries" Ann. Stat. , 14 (1986) pp. 856–873 |
[a3] | O.E. Barndorff-Nielsen, "Differential geometry and statistics. Some mathematical aspects" Indian J. Math. (Ramanujan Centenary Volume) , 29 (1987) pp. 335–350 |
[a4] | O.E. Barndorff-Nielsen, P.E Jupp, "Statistics, yokes and symplectic geometry" Ann. Toulouse , to appear (1997) |
[a5] | P. Blæsild, "Yokes and tensors derived from yokes" Ann. Inst. Statist. Math. , 43 (1991) pp. 95–113 |
Yoke. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Yoke&oldid=17982