Namespaces
Variants
Actions

Difference between revisions of "Kazdan inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 21 formulas out of 21 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200701.png" /> be a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200702.png" />-dimensional scalar inner product space (cf. also [[Inner product|Inner product]]; [[Pre-Hilbert space|Pre-Hilbert space]]), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200703.png" /> be the space of linear operators of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200704.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200705.png" /> be a given family of symmetric linear operators depending continuously on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200706.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200707.png" />, denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200708.png" /> the solution of the initial value problem
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200709.png" /></td> </tr></table>
+
Out of 21 formulas, 21 were replaced by TEX code.-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007010.png" /></td> </tr></table>
+
{{TEX|semi-auto}}{{TEX|done}}
 +
Let $V$ be a real $N$-dimensional scalar inner product space (cf. also [[Inner product|Inner product]]; [[Pre-Hilbert space|Pre-Hilbert space]]), let $\mathcal{L} ( V )$ be the space of linear operators of $V$, and let $\mathcal{R} ( t ) \in \mathcal{L} ( V )$ be a given family of symmetric linear operators depending continuously on $t \in \mathbf{R}$. For $s \in \mathbf{R}$, denote by $C _ { S } : \mathbf{R} \rightarrow \mathcal{L} ( V )$ the solution of the initial value problem
  
Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007011.png" /> is invertible for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007012.png" />. Then for every positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007013.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007014.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007015.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007016.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007017.png" />, one has
+
\begin{equation*} X ^ { \prime \prime } ( t ) + \mathcal{R} ( t ) \circ X ( t ) = 0 \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007018.png" /></td> </tr></table>
+
\begin{equation*} X ( s ) = 0 , X ^ { \prime } ( s ) = I. \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007019.png" /></td> </tr></table>
+
Suppose that $C _ { 0 } ( t )$ is invertible for all $t \in ( 0 , \pi )$. Then for every positive $C ^ { 2 }$-function $f$ on $( 0 , \pi )$ satisfying $f ( \pi - t ) = f ( t )$ on $( 0 , \pi )$, one has
  
with equality if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007020.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007021.png" />.
+
\begin{equation*} \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq \end{equation*}
 +
 
 +
\begin{equation*} \geq \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { sin } ^ { N } ( t - s ) d t, \end{equation*}
 +
 
 +
with equality if and only if $\mathcal{R} ( t ) = I$ for all $t \in ( 0 , \pi )$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.L. Kazdan,  "An inequality arising in geometry"  A.L. Besse (ed.) , ''Manifolds all of whose Geodesics are Closed'' , Springer  (1978)  pp. 243–246; Appendix E</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I. Chavel,  "Riemannian geometry: A modern introduction" , Cambridge Univ. Press  (1995)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  J.L. Kazdan,  "An inequality arising in geometry"  A.L. Besse (ed.) , ''Manifolds all of whose Geodesics are Closed'' , Springer  (1978)  pp. 243–246; Appendix E</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  I. Chavel,  "Riemannian geometry: A modern introduction" , Cambridge Univ. Press  (1995)</td></tr></table>

Latest revision as of 16:46, 1 July 2020

Let $V$ be a real $N$-dimensional scalar inner product space (cf. also Inner product; Pre-Hilbert space), let $\mathcal{L} ( V )$ be the space of linear operators of $V$, and let $\mathcal{R} ( t ) \in \mathcal{L} ( V )$ be a given family of symmetric linear operators depending continuously on $t \in \mathbf{R}$. For $s \in \mathbf{R}$, denote by $C _ { S } : \mathbf{R} \rightarrow \mathcal{L} ( V )$ the solution of the initial value problem

\begin{equation*} X ^ { \prime \prime } ( t ) + \mathcal{R} ( t ) \circ X ( t ) = 0 \end{equation*}

\begin{equation*} X ( s ) = 0 , X ^ { \prime } ( s ) = I. \end{equation*}

Suppose that $C _ { 0 } ( t )$ is invertible for all $t \in ( 0 , \pi )$. Then for every positive $C ^ { 2 }$-function $f$ on $( 0 , \pi )$ satisfying $f ( \pi - t ) = f ( t )$ on $( 0 , \pi )$, one has

\begin{equation*} \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq \end{equation*}

\begin{equation*} \geq \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { sin } ^ { N } ( t - s ) d t, \end{equation*}

with equality if and only if $\mathcal{R} ( t ) = I$ for all $t \in ( 0 , \pi )$.

References

[a1] J.L. Kazdan, "An inequality arising in geometry" A.L. Besse (ed.) , Manifolds all of whose Geodesics are Closed , Springer (1978) pp. 243–246; Appendix E
[a2] I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995)
How to Cite This Entry:
Kazdan inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kazdan_inequality&oldid=17407
This article was adapted from an original article by H. Kaul (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article