Namespaces
Variants
Actions

Difference between revisions of "Geodesic distance"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(details)
Line 1: Line 1:
The length of the shortest [[Geodesic line|geodesic line]] connecting two points (or two sets). In variational calculus the geodesic distance is the extremal value of the functional under study concerning extremals connecting the two points.
+
The length of the shortest [[geodesic line]] connecting two points (or two sets). In variational calculus the geodesic distance is the extremal value of the functional under study concerning extremals connecting the two points.
 
 
====Comments====
 
 
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Busemann,  "The geometry of geodesics" , Acad. Press  (1955)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Klingenberg,  "Riemannian geometry" , de Gruyter  (1982)  (Translated from German)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Busemann,  "The geometry of geodesics" , Acad. Press  (1955)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Klingenberg,  "Riemannian geometry" , de Gruyter  (1982)  (Translated from German)</TD></TR>
 +
</table>

Revision as of 07:55, 16 April 2023

The length of the shortest geodesic line connecting two points (or two sets). In variational calculus the geodesic distance is the extremal value of the functional under study concerning extremals connecting the two points.

References

[a1] H. Busemann, "The geometry of geodesics" , Acad. Press (1955)
[a2] W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)
How to Cite This Entry:
Geodesic distance. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Geodesic_distance&oldid=17325