Namespaces
Variants
Actions

Difference between revisions of "Complete integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
The solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237801.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237802.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237803.png" />, of a first-order partial differential equation
+
{{TEX|done}}
 +
The solution $u(x,a)$, $x=(x_1,\dots,x_n)$, $a=(a_1,\dots,a_n)$, of a first-order partial differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237804.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$F\left(x_1,\dots,x_n,u,\frac{\partial u}{\partial x_1},\dots,\frac{\partial u}{\partial x_n}\right)=0,\tag{1}$$
  
that depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237805.png" /> parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237806.png" /> and in the relevant region satisfies the condition
+
that depends on $n$ parameters $a_1,\dots,a_n$ and in the relevant region satisfies the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237807.png" /></td> </tr></table>
+
$$\det|u_{x_ia_k}|\neq0.$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237808.png" /> is considered as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c0237809.png" />-parameter family of solutions, then the envelope of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378010.png" />-parameter subfamily distinguished by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378012.png" />, is a solution to (1). Then the lines of contact between the surfaces given by the complete integral and the envelope are characteristics of (1). A complete integral can be used to describe the solution of the characteristic system of the ordinary differential equations corresponding to (1), and thus enables one to reverse Cauchy's method, which reduces the solution of (1) to that of the characteristic system. This approach is used in analytical mechanics, where one has to find the solution of a canonical system of ordinary differential equations
+
If $u(x,a)$ is considered as an $n$-parameter family of solutions, then the envelope of any $(n-1)$-parameter subfamily distinguished by the condition $a_i=\omega_i(t_1,\dots,t_{n-1})$, $1\leq i\leq n$, is a solution to \ref{1}. Then the lines of contact between the surfaces given by the complete integral and the envelope are characteristics of \ref{1}. A complete integral can be used to describe the solution of the characteristic system of the ordinary differential equations corresponding to \ref{1}, and thus enables one to reverse Cauchy's method, which reduces the solution of \ref{1} to that of the characteristic system. This approach is used in analytical mechanics, where one has to find the solution of a canonical system of ordinary differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$\frac{dx_i}{\partial t}=\frac{\partial H}{\partial p_i},\quad\frac{dp_i}{\partial t}=-\frac{\partial H}{\partial x_i},\quad1\leq i\leq n.\tag{2}$$
  
 
This system is a characteristic one for the Jacobi equation
 
This system is a characteristic one for the Jacobi equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$u_t+H\left(x_i,\dots,x_n,t,\frac{\partial u}{\partial x_1},\dots,\frac{\partial u}{\partial x_n}\right)=0.\tag{3}$$
  
If the complete integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378015.png" /> for (3) is known, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378016.png" /> integrals of the canonical system (2) are given by the equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023780/c02378021.png" /> are arbitrary constants.
+
If the complete integral $u=u(x_1,\dots,x_n,t,a_1,\dots,a_n)=a_0$ for \ref{3} is known, then the $2n$ integrals of the canonical system \ref{2} are given by the equations $u_{a_i}=b_i$, $u_{x_i}=p_i$, $1\leq i\leq n$, where $a_i$ and $b_i$ are arbitrary constants.
  
  

Revision as of 14:47, 19 August 2014

The solution $u(x,a)$, $x=(x_1,\dots,x_n)$, $a=(a_1,\dots,a_n)$, of a first-order partial differential equation

$$F\left(x_1,\dots,x_n,u,\frac{\partial u}{\partial x_1},\dots,\frac{\partial u}{\partial x_n}\right)=0,\tag{1}$$

that depends on $n$ parameters $a_1,\dots,a_n$ and in the relevant region satisfies the condition

$$\det|u_{x_ia_k}|\neq0.$$

If $u(x,a)$ is considered as an $n$-parameter family of solutions, then the envelope of any $(n-1)$-parameter subfamily distinguished by the condition $a_i=\omega_i(t_1,\dots,t_{n-1})$, $1\leq i\leq n$, is a solution to \ref{1}. Then the lines of contact between the surfaces given by the complete integral and the envelope are characteristics of \ref{1}. A complete integral can be used to describe the solution of the characteristic system of the ordinary differential equations corresponding to \ref{1}, and thus enables one to reverse Cauchy's method, which reduces the solution of \ref{1} to that of the characteristic system. This approach is used in analytical mechanics, where one has to find the solution of a canonical system of ordinary differential equations

$$\frac{dx_i}{\partial t}=\frac{\partial H}{\partial p_i},\quad\frac{dp_i}{\partial t}=-\frac{\partial H}{\partial x_i},\quad1\leq i\leq n.\tag{2}$$

This system is a characteristic one for the Jacobi equation

$$u_t+H\left(x_i,\dots,x_n,t,\frac{\partial u}{\partial x_1},\dots,\frac{\partial u}{\partial x_n}\right)=0.\tag{3}$$

If the complete integral $u=u(x_1,\dots,x_n,t,a_1,\dots,a_n)=a_0$ for \ref{3} is known, then the $2n$ integrals of the canonical system \ref{2} are given by the equations $u_{a_i}=b_i$, $u_{x_i}=p_i$, $1\leq i\leq n$, where $a_i$ and $b_i$ are arbitrary constants.


Comments

The Jacobi equation is usually called the (time-dependent) Hamilton–Jacobi equation (see also Hamiltonian system).

References

[a1] P.R. Garabedian, "Partial differential equations" , Wiley (1964)
[a2] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, "Modern geometry - methods and applications" , 1 , Springer (1984) (Translated from Russian)
How to Cite This Entry:
Complete integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complete_integral&oldid=15444
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article