Difference between revisions of "Frobenius formula"
(Importing text file) |
m (link) |
||
Line 5: | Line 5: | ||
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417805.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417805.png" /></td> </tr></table> | ||
− | so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417806.png" /> is the ordinary Vandermonde determinant. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417807.png" />; then after discarding zeros the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417808.png" />-tuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417809.png" /> can be regarded as a partition of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178010.png" />. Consider the corresponding irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178011.png" /> of the symmetric group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178012.png" />. For any partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178014.png" /> one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178015.png" /> the value of the character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178016.png" /> on the conjugacy class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178017.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178018.png" />, and by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178019.png" /> the order of the centralizer of any permutation in this class. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178021.png" />. Then | + | so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417806.png" /> is the ordinary Vandermonde determinant. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417807.png" />; then after discarding zeros the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417808.png" />-tuple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f0417809.png" /> can be regarded as a partition of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178010.png" />. Consider the corresponding irreducible representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178011.png" /> of the symmetric group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178012.png" />. For any partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178014.png" /> one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178015.png" /> the value of the character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178016.png" /> on the [[conjugacy class]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178017.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178018.png" />, and by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178019.png" /> the order of the centralizer of any permutation in this class. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178021.png" />. Then |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178022.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178022.png" /></td> </tr></table> |
Revision as of 20:58, 29 November 2014
A formula expressing a relation between the generalized Vandermonde determinant and the ordinary one (see Vandermonde determinant) in terms of sums of powers. The characters of representations of a symmetric group (cf. Representation of the symmetric groups) appear as coefficients in the Frobenius formula.
Let be independent variables. For any
-tuple
of non-negative integers satisfying the condition
, let
![]() |
so that is the ordinary Vandermonde determinant. Let
; then after discarding zeros the
-tuple
can be regarded as a partition of the number
. Consider the corresponding irreducible representation
of the symmetric group
. For any partition
of
one denotes by
the value of the character of
on the conjugacy class of
determined by
, and by
the order of the centralizer of any permutation in this class. Let
, where
. Then
![]() |
where the sum is taken over all (unordered) partitions of . Here, if the partition
contains
ones,
twos, etc., then
![]() |
If , then Frobenius' formula can be put in the form
![]() |
where the sum is taken over all partitions of (adding the appropriate number of zeros). The last formula can be used to compute the characters of the symmetric group. Namely,
is the coefficient of
in the polynomial
.
References
[1] | F.D. Murnagan, "The theory of group representations" , Johns Hopkins Univ. Press (1938) |
Comments
See also Character of a representation of a group.
References
[a1] | H. Boerner, "Representations of groups" , North-Holland (1970) (Translated from German) |
[a2] | D.E. Littlewood, "The theory of group characters and matrix representations of groups" , Clarendon Press (1950) |
[a3] | I.G. Macdonald, "Symmetric functions and Hall polynomials" , Clarendon Press (1979) |
[a4] | B.G. Wybourne, "Symmetry principles and atomic spectroscopy" , Wiley (Interscience) (1970) |
Frobenius formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Frobenius_formula&oldid=15262