Difference between revisions of "Hasse invariant"
(Importing text file) |
Ulf Rehmann (talk | contribs) m |
||
Line 1: | Line 1: | ||
− | The Hasse invariant | + | The Hasse invariant $h(A)$ of a central simple algebra $A$ over a local |
+ | field $K$ (or over the field $K=\R$ or $\C$) is the image of the class of | ||
+ | $A$ under the canonical isomorphism of the | ||
+ | [[Brauer group|Brauer group]] of $K$ onto the group of all complex | ||
+ | roots of unity (or onto the group $\{\pm1\}$ or $\{1\}$). For a cyclic algebra | ||
+ | $A$ with generators $a,b$ and defining relations $a^n=x$, $b^n=y$, $ba=\epsilon ab$, where | ||
+ | $x,y\in K^*$ and $\epsilon\in K$ is a primitive $n$-th root of unity, the Hasse invariant | ||
+ | $h(A)$ is the same as the | ||
+ | [[Norm-residue symbol|norm-residue symbol]] (Hilbert symbol) $(x,y)_n$. In | ||
+ | particular, the Hasse invariant of the quaternion algebra is $-1$. | ||
− | For a [[Central algebra|central algebra]] | + | For a |
+ | [[Central algebra|central algebra]] $A$ over a global field $K$ and | ||
+ | any | ||
+ | [[Valuation|valuation]] $\nu$ of this field the local Hasse invariant | ||
+ | $h_\nu(A)$ is defined as the Hasse invariant of the algebra $A\otimes K_\nu$ over the | ||
+ | completion $K_\nu$ of $K$ in the topology determined by $\nu$. The local | ||
+ | Hasse invariants determine the class of $A$ uniquely. They are related | ||
+ | by the following conditions: 1) there are only finitely-many | ||
+ | valuations $\nu$ for which $h_\nu(A)\ne 1$; and 2) $\prod_\nu h_\nu(A) = 1$ (the reciprocity law). Apart | ||
+ | from these conditions they can assume arbitrary values. | ||
− | The Hasse invariant was introduced by H. Hasse [[#References|[1]]] and [[#References|[2]]]. | + | The Hasse invariant was introduced by H. Hasse |
+ | [[#References|[1]]] and | ||
+ | [[#References|[2]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD |
+ | valign="top"> H. Hasse, "Ueber $p$-adische Schiefkörper und ihre | ||
+ | Bedeutung für die Arithmetik hyperkomplexen Zahlsysteme" | ||
+ | ''Math. Ann.'' , '''104''' (1931) pp. 495–534</TD></TR><TR><TD | ||
+ | valign="top">[2]</TD> <TD valign="top"> H. Hasse, "Die Struktur der | ||
+ | R. Brauerschen Algebrenklassengruppe über einem algebraischen | ||
+ | Zahlkörper. Inbesondere Begründung der Theorie des Normenrestsymbols | ||
+ | und Herleitung des Reziprozitätsgesetzes mit nichtkommutativen | ||
+ | Hilfsmitteln" ''Math. Ann.'' , '''107''' (1933) | ||
+ | pp. 731–760</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> | ||
+ | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' | ||
+ | , Acad. Press (1986)</TD></TR><TR><TD valign="top">[4]</TD> <TD | ||
+ | valign="top"> A. Weil, "Basic number theory" , Springer | ||
+ | (1967)</TD></TR></table> | ||
− | The Hasse invariant, the Hasse–Minkowski invariant, Hasse's symbol, | + | The Hasse invariant, the Hasse–Minkowski invariant, Hasse's symbol, |
+ | $\epsilon(f)$, of a non-degenerate | ||
+ | [[Quadratic form|quadratic form]] $f\sim a_1 x_1^2 + \cdots + a_n | ||
+ | x_n^2$ | ||
+ | over a local field $K$ of | ||
+ | characteristic $\ne 2$ (or over the field $K=\R$ or $\C$) is the product $$\prod_{i<j} (a_i,a_j) = \pm 1$$ | ||
+ | where $(\ ,\ )$ is the quadratic Hilbert symbol, that is, $(a,b) = 1$ if the | ||
+ | quadratic form $ax^2+by^2$ represents 1 in the field $K$ and $(a,b) = -1$ | ||
+ | otherwise. The Hasse invariant depends only on the equivalence class | ||
+ | of the form $f$, and not on the choice of a diagonal form in this | ||
+ | class. Sometimes the Hasse invariant is defined as the product $\prod_{i\le j}(a_i,a_j)$, | ||
+ | which differs from the definition above by the factor $(d(f),d(f))$, where $d(f)$ | ||
+ | is the | ||
+ | [[Discriminant|discriminant]] of the form $f$. | ||
− | + | In the case of a local field $K$ the number $n$ of variables, the | |
+ | discriminant and the Hasse invariant determine the class of the form | ||
+ | $f$. For $n\ge 3$, the invariants $d(f)$ and $\epsilon(f)$ can take arbitrary values | ||
+ | independently of each other; for $n=2$ the case $d(f)=-1$, $\epsilon(f) = -1$ is excluded; | ||
+ | for $n=1$ one always has $\epsilon(f) = 1$. | ||
− | + | When $K=\R$, the Hasse invariant can be expressed in terms of the | |
+ | [[Signature|signature]], namely, $$\def\e{\epsilon} \e(f) = (-1)^{s(s-1)/2}$$ where $s$ is the negative index | ||
+ | of inertia of the form $f$. When $K=\C$, one has $\e(f)=1$. | ||
− | + | For a non-degenerate quadratic form $f$ over a global field $K$ of | |
+ | characteristic $\ne 2$ and any valuation $\nu$ of $K$ the local Hasse | ||
+ | invariant $\e_\nu(f)$ is defined as the Hasse invariant of the quadratic form | ||
+ | $f$ regarded over the completion $K_\nu$ of $K$ in the topology determined | ||
+ | by $\nu$. The number of variables, the discriminant, the local Hasse | ||
+ | invariants, and the signatures over the real completions of $K$ | ||
+ | determine the class of $f$. | ||
− | + | Necessary and sufficient conditions for the existence of a | |
+ | non-degenerate quadratic form in $n$ variables over a global field $K$ | ||
+ | of characteristic $\ne 2$ having a given discriminant $d\ne 0$, given the local | ||
+ | Hasse invariants $\e_\nu$, and, for real valuations $\nu$, given the negative | ||
+ | indices of inertia $s_\nu$, are as follows: | ||
− | + | a) $\e_\nu \ne 1$ for only finitely-many valuations $\nu$; | |
− | + | b) $\prod_\nu \e_\nu = 1$ (a consequence of the | |
+ | [[Quadratic reciprocity law|quadratic reciprocity law]]); | ||
− | + | c) $\e_\nu = 1$ if $n=1$ or if $n=2$ and $d\in (-1)(K_\nu^*)^2$; | |
− | + | d) $\e_\nu = (-1)^{s_\nu(s_\nu-1)/2}$ for every real valuation $\nu$; | |
− | + | e) $\e_\nu=1$ for every complex valuation $\nu$; | |
− | + | f) ${\rm sign}\; d_\nu = (-1)^{s_\nu}$ for every real valuation $\nu$ (here $d_\nu$ is the image of $d$ | |
− | + | under the isomorphism $K_\nu\to \R$). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
The Hasse invariant was introduced by H. Hasse . | The Hasse invariant was introduced by H. Hasse . | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1a]</TD> <TD |
+ | valign="top"> H. Hasse, "Ueber die Darstellbarkeit von Zahlen durch | ||
+ | quadratische Formen im Körper der rationalen Zahlen" ''J. Reine | ||
+ | Angew. Math.'' , '''152''' (1923) pp. 129–148</TD></TR><TR><TD | ||
+ | valign="top">[1b]</TD> <TD valign="top"> H. Hasse, "Ueber die | ||
+ | Aequivalenz quadratischer Formen im Körper der rationalen Zahlen" | ||
+ | ''J. Reine Angew. Math.'' , '''152''' (1923) | ||
+ | pp. 205–224</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> | ||
+ | H. Hasse, "Symmetrische Matrizen im Körper der rationalen Zahlen" | ||
+ | ''J. Reine Angew. Math.'' , '''153''' (1924) | ||
+ | pp. 12–43</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> | ||
+ | H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in | ||
+ | einem beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , | ||
+ | '''153''' (1924) pp. 113–130</TD></TR><TR><TD valign="top">[1e]</TD> | ||
+ | <TD valign="top"> H. Hasse, "Aequivalenz quadratischer Formen in einem | ||
+ | beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , | ||
+ | '''153''' (1924) pp. 158–162</TD></TR><TR><TD valign="top">[2]</TD> | ||
+ | <TD valign="top"> O.T. O'Meara, "Introduction to quadratic forms" , | ||
+ | Springer (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD | ||
+ | valign="top"> T.Y. Lam, "The algebraic theory of quadratic forms" , | ||
+ | Benjamin (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD | ||
+ | valign="top"> J.W.S. Cassels, "Rational quadratic forms" , Acad. Press | ||
+ | (1978)</TD></TR></table> | ||
− | The Hasse invariant of an elliptic curve | + | The Hasse invariant of an elliptic curve $X$ over a field $K$ of |
+ | characteristic $p>0$ is the number 0 or 1 depending on whether the | ||
+ | endomorphism of the cohomology group $H^1(X,\mathcal{O}_X)$ induced by the | ||
+ | [[Frobenius endomorphism|Frobenius endomorphism]] of $X$ is null or | ||
+ | bijective. Curves for which the Hasse invariant is zero are called | ||
+ | supersingular. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD |
+ | valign="top"> R. Hartshorne, "Algebraic geometry" , Springer | ||
+ | (1977)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> | ||
+ | Yu.I. Manin, "On the Hasse–Witt matrix of an algebraic curve" | ||
+ | ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''25''' : 1 (1961) pp. 153–172 | ||
+ | (In Russian)</TD></TR></table> | ||
Line 54: | Line 142: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD |
+ | valign="top"> J.H. Silverman, "The arithmetic of elliptic curves" , | ||
+ | Springer (1986)</TD></TR></table> |
Revision as of 20:42, 14 September 2011
The Hasse invariant $h(A)$ of a central simple algebra $A$ over a local field $K$ (or over the field $K=\R$ or $\C$) is the image of the class of $A$ under the canonical isomorphism of the Brauer group of $K$ onto the group of all complex roots of unity (or onto the group $\{\pm1\}$ or $\{1\}$). For a cyclic algebra $A$ with generators $a,b$ and defining relations $a^n=x$, $b^n=y$, $ba=\epsilon ab$, where $x,y\in K^*$ and $\epsilon\in K$ is a primitive $n$-th root of unity, the Hasse invariant $h(A)$ is the same as the norm-residue symbol (Hilbert symbol) $(x,y)_n$. In particular, the Hasse invariant of the quaternion algebra is $-1$.
For a central algebra $A$ over a global field $K$ and any valuation $\nu$ of this field the local Hasse invariant $h_\nu(A)$ is defined as the Hasse invariant of the algebra $A\otimes K_\nu$ over the completion $K_\nu$ of $K$ in the topology determined by $\nu$. The local Hasse invariants determine the class of $A$ uniquely. They are related by the following conditions: 1) there are only finitely-many valuations $\nu$ for which $h_\nu(A)\ne 1$; and 2) $\prod_\nu h_\nu(A) = 1$ (the reciprocity law). Apart from these conditions they can assume arbitrary values.
The Hasse invariant was introduced by H. Hasse [1] and [2].
References
[1] | H. Hasse, "Ueber $p$-adische Schiefkörper und ihre
Bedeutung für die Arithmetik hyperkomplexen Zahlsysteme" Math. Ann. , 104 (1931) pp. 495–534 |
[2] | H. Hasse, "Die Struktur der
R. Brauerschen Algebrenklassengruppe über einem algebraischen Zahlkörper. Inbesondere Begründung der Theorie des Normenrestsymbols und Herleitung des Reziprozitätsgesetzes mit nichtkommutativen Hilfsmitteln" Math. Ann. , 107 (1933) pp. 731–760 |
[3] |
J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986) |
[4] | A. Weil, "Basic number theory" , Springer (1967) |
The Hasse invariant, the Hasse–Minkowski invariant, Hasse's symbol, $\epsilon(f)$, of a non-degenerate quadratic form $f\sim a_1 x_1^2 + \cdots + a_n x_n^2$ over a local field $K$ of characteristic $\ne 2$ (or over the field $K=\R$ or $\C$) is the product $$\prod_{i<j} (a_i,a_j) = \pm 1$$ where $(\ ,\ )$ is the quadratic Hilbert symbol, that is, $(a,b) = 1$ if the quadratic form $ax^2+by^2$ represents 1 in the field $K$ and $(a,b) = -1$ otherwise. The Hasse invariant depends only on the equivalence class of the form $f$, and not on the choice of a diagonal form in this class. Sometimes the Hasse invariant is defined as the product $\prod_{i\le j}(a_i,a_j)$, which differs from the definition above by the factor $(d(f),d(f))$, where $d(f)$ is the discriminant of the form $f$.
In the case of a local field $K$ the number $n$ of variables, the discriminant and the Hasse invariant determine the class of the form $f$. For $n\ge 3$, the invariants $d(f)$ and $\epsilon(f)$ can take arbitrary values independently of each other; for $n=2$ the case $d(f)=-1$, $\epsilon(f) = -1$ is excluded; for $n=1$ one always has $\epsilon(f) = 1$.
When $K=\R$, the Hasse invariant can be expressed in terms of the signature, namely, $$\def\e{\epsilon} \e(f) = (-1)^{s(s-1)/2}$$ where $s$ is the negative index of inertia of the form $f$. When $K=\C$, one has $\e(f)=1$.
For a non-degenerate quadratic form $f$ over a global field $K$ of characteristic $\ne 2$ and any valuation $\nu$ of $K$ the local Hasse invariant $\e_\nu(f)$ is defined as the Hasse invariant of the quadratic form $f$ regarded over the completion $K_\nu$ of $K$ in the topology determined by $\nu$. The number of variables, the discriminant, the local Hasse invariants, and the signatures over the real completions of $K$ determine the class of $f$.
Necessary and sufficient conditions for the existence of a non-degenerate quadratic form in $n$ variables over a global field $K$ of characteristic $\ne 2$ having a given discriminant $d\ne 0$, given the local Hasse invariants $\e_\nu$, and, for real valuations $\nu$, given the negative indices of inertia $s_\nu$, are as follows:
a) $\e_\nu \ne 1$ for only finitely-many valuations $\nu$;
b) $\prod_\nu \e_\nu = 1$ (a consequence of the quadratic reciprocity law);
c) $\e_\nu = 1$ if $n=1$ or if $n=2$ and $d\in (-1)(K_\nu^*)^2$;
d) $\e_\nu = (-1)^{s_\nu(s_\nu-1)/2}$ for every real valuation $\nu$;
e) $\e_\nu=1$ for every complex valuation $\nu$;
f) ${\rm sign}\; d_\nu = (-1)^{s_\nu}$ for every real valuation $\nu$ (here $d_\nu$ is the image of $d$ under the isomorphism $K_\nu\to \R$).
The Hasse invariant was introduced by H. Hasse .
References
[1a] | H. Hasse, "Ueber die Darstellbarkeit von Zahlen durch
quadratische Formen im Körper der rationalen Zahlen" J. Reine Angew. Math. , 152 (1923) pp. 129–148 |
[1b] | H. Hasse, "Ueber die
Aequivalenz quadratischer Formen im Körper der rationalen Zahlen" J. Reine Angew. Math. , 152 (1923) pp. 205–224 |
[1c] |
H. Hasse, "Symmetrische Matrizen im Körper der rationalen Zahlen" J. Reine Angew. Math. , 153 (1924) pp. 12–43 |
[1d] |
H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper" J. Reine Angew. Math. , 153 (1924) pp. 113–130 |
[1e] | H. Hasse, "Aequivalenz quadratischer Formen in einem
beliebigen algebraischen Zahlkörper" J. Reine Angew. Math. , 153 (1924) pp. 158–162 |
[2] | O.T. O'Meara, "Introduction to quadratic forms" , Springer (1963) |
[3] | T.Y. Lam, "The algebraic theory of quadratic forms" , Benjamin (1973) |
[4] | J.W.S. Cassels, "Rational quadratic forms" , Acad. Press (1978) |
The Hasse invariant of an elliptic curve $X$ over a field $K$ of characteristic $p>0$ is the number 0 or 1 depending on whether the endomorphism of the cohomology group $H^1(X,\mathcal{O}_X)$ induced by the Frobenius endomorphism of $X$ is null or bijective. Curves for which the Hasse invariant is zero are called supersingular.
References
[1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) |
[2] |
Yu.I. Manin, "On the Hasse–Witt matrix of an algebraic curve" Izv. Akad. Nauk. SSSR Ser. Mat. , 25 : 1 (1961) pp. 153–172 (In Russian) |
Comments
References
[a1] | J.H. Silverman, "The arithmetic of elliptic curves" , Springer (1986) |
Hasse invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hasse_invariant&oldid=14815