|
|
Line 1: |
Line 1: |
− | A measure of the linear dependence of a pair of random variables from a collection of random variables in the case where the influence of the remaining variables is eliminated. More precisely, suppose that the random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716101.png" /> have a joint distribution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716102.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716104.png" /> be the best linear approximations to the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716105.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716106.png" /> based on the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716107.png" />. Then the partial correlation coefficient between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716108.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p0716109.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161010.png" />, is defined as the ordinary correlation coefficient between the random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161012.png" />:
| + | {{MSC|62}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161013.png" /></td> </tr></table>
| + | A partial correlation coefficient is |
| + | a measure of the linear dependence of a pair of random variables from a collection of random variables in the case where the influence of the remaining variables is eliminated. More precisely, suppose that the random variables $X_1,\dots,X_n$ have a joint distribution in $\R^n$, and let $X^*_{1;3\dots n}$, $X^*_{2;3\dots n}$ be the best linear approximations to the variables $X_1$ and $X_2$ based on the variables $X_3,\dots,X_n$. Then the partial correlation coefficient between $X_1$ and $X_2$, denoted by $\rho_{12;3\dots n}$, is defined as the ordinary correlation coefficient between the random variables $Y_1 = X_1 - X^*_{1;3\dots n}$ and $Y_2 = X_2 - X^*_{2;3\dots n}$: |
| | | |
− | It follows from the definition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161014.png" />. The partial correlation coefficient can be expressed in terms of the entries of the [[Correlation matrix|correlation matrix]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161016.png" /> is the correlation coefficient between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161018.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161019.png" /> be the cofactor of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161020.png" /> in the determinant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161021.png" />; then | + | $$\rho_{12;3\dots n} = \frac{\mathrm{E}\{(Y_1- \mathrm{E}Y_1)(Y_2- \mathrm{E}Y_2)\}}{\sqrt{\mathrm{D}Y_1\mathrm{D}Y_2}}.$$ |
| + | It follows from the definition that $-1 \le \rho_{12;3\dots n}\le 1$. The partial correlation coefficient can be expressed in terms of the entries of the |
| + | [[Correlation matrix|correlation matrix]]. Let $P=\|\rho_{ij}\|$, where $\rho_{ij}$ is the correlation coefficient between $X_i$ and $X_j$, and let $P_{ij}$ be the cofactor of the element $\rho_{ij}$ in the determinant $|P|$; then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161022.png" /></td> </tr></table>
| + | $$\rho_{12;3\dots n} = - \frac{P_{12}}{\sqrt{P_{11} P_{22}}}.$$ |
| + | For example, for $n=3$, |
| | | |
− | For example, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161023.png" />,
| + | $$\rho_{12;3} = - \frac{\rho_{12}\rho_{33} - \rho_{13}\rho_{23}}{\sqrt{(1-\rho_{13}^2)(1-\rho_{23}^2)}}.$$ |
| + | The partial correlation coefficient of any two variables $X_i,\; X_j$ from $X_1,\dots,X_n$ is defined analogously. In general, the partial correlation coefficient $\rho_{12;3\dots n}$ is different from the (ordinary) |
| + | [[Correlation coefficient|correlation coefficient]] $\rho_{12}$ of $X_1$ and $X_2$. The difference between $\rho_{12;3\dots n}$ and $\rho_{12}$ indicates whether $X_1$ and $X_2$ are dependent, or whether the dependence between them is a consequence of the dependence of each of them on $X_3,\dots,X_n$. If the variables $X_1,\dots,X_n$ are pairwise uncorrelated, then all partial correlation coefficients are zero. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161024.png" /></td> </tr></table>
| + | The empirical analogue of the partial correlation coefficient $\rho_{12;3\dots n}$, the empirical partial correlation coefficient or sample partial correlation coefficient is the statistic |
| | | |
− | The partial correlation coefficient of any two variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161025.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161026.png" /> is defined analogously. In general, the partial correlation coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161027.png" /> is different from the (ordinary) [[Correlation coefficient|correlation coefficient]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161030.png" />. The difference between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161032.png" /> indicates whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161034.png" /> are dependent, or whether the dependence between them is a consequence of the dependence of each of them on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161035.png" />. If the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161036.png" /> are pairwise uncorrelated, then all partial correlation coefficients are zero.
| + | $$r_{12;3\dots n} = - \frac{R_{12}}{\sqrt{R_{11}R_{22}}},$$ |
| + | where $R_{ij}$ is the cofactor in the determinant of the matrix $R=\|r_{ij}\|$ of the empirical correlation coefficients $r_{ij}$. If the results of the observations are independent and multivariate normally distributed, and $\rho_{12;3\dots n}$, then $r_{12;3\dots n}$ is distributed according to the probability density |
| | | |
− | The empirical analogue of the partial correlation coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161037.png" />, the empirical partial correlation coefficient or sample partial correlation coefficient is the statistic
| + | $$\frac{1}{\sqrt{\pi}} \frac{\Gamma((N-n+1)/2)}{\Gamma((N-n)/2)}(1-x^2)^{(N-n-2)/2}, \quad -1<x<1$$ |
− | | + | ($N$ is the sample size). To test hypotheses about partial correlation coefficients, one uses the fact that the statistic |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161038.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161039.png" /> is the cofactor in the determinant of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161040.png" /> of the empirical correlation coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161041.png" />. If the results of the observations are independent and multivariate normally distributed, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161043.png" /> is distributed according to the probability density
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161044.png" /></td> </tr></table>
| |
− | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161045.png" /> is the sample size). To test hypotheses about partial correlation coefficients, one uses the fact that the statistic | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161046.png" /></td> </tr></table>
| |
− | | |
− | has, under the stated conditions, a [[Student distribution|Student distribution]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071610/p07161047.png" /> degrees of freedom.
| |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.G. Kendall, A. Stuart, "The advanced theory of statistics" , '''2. Inference and relationship''' , Griffin (1979)</TD></TR></table>
| |
− | | |
− | | |
− | | |
− | ====Comments====
| |
| | | |
| + | $$t=\sqrt{N-n}\frac{r}{\sqrt{1-r^2}},\quad \textrm{where}\ r = r_{12;3\dots n},$$ |
| + | has, under the stated conditions, a |
| + | [[Student distribution|Student distribution]] with $N-n$ degrees of freedom. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Cr}}||valign="top"| H. Cramér, "Mathematical methods of statistics", Princeton Univ. Press (1946) {{MR|0016588}} {{ZBL|0063.01014}} |
| + | |- |
| + | |valign="top"|{{Ref|KeSt}}||valign="top"| M.G. Kendall, A. Stuart, "The advanced theory of statistics", '''2. Inference and relationship''', Griffin (1979) {{MR|0474561}} {{MR|0243648}} {{ZBL|0416.62001}} |
| + | |- |
| + | |valign="top"|{{Ref|Mu}}||valign="top"| R.J. Muirhead, "Aspects of multivariate statistical theory", Wiley (1982) {{MR|0652932}} {{ZBL|0556.62028}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 62-XX [MSN][ZBL]
A partial correlation coefficient is
a measure of the linear dependence of a pair of random variables from a collection of random variables in the case where the influence of the remaining variables is eliminated. More precisely, suppose that the random variables $X_1,\dots,X_n$ have a joint distribution in $\R^n$, and let $X^*_{1;3\dots n}$, $X^*_{2;3\dots n}$ be the best linear approximations to the variables $X_1$ and $X_2$ based on the variables $X_3,\dots,X_n$. Then the partial correlation coefficient between $X_1$ and $X_2$, denoted by $\rho_{12;3\dots n}$, is defined as the ordinary correlation coefficient between the random variables $Y_1 = X_1 - X^*_{1;3\dots n}$ and $Y_2 = X_2 - X^*_{2;3\dots n}$:
$$\rho_{12;3\dots n} = \frac{\mathrm{E}\{(Y_1- \mathrm{E}Y_1)(Y_2- \mathrm{E}Y_2)\}}{\sqrt{\mathrm{D}Y_1\mathrm{D}Y_2}}.$$
It follows from the definition that $-1 \le \rho_{12;3\dots n}\le 1$. The partial correlation coefficient can be expressed in terms of the entries of the
correlation matrix. Let $P=\|\rho_{ij}\|$, where $\rho_{ij}$ is the correlation coefficient between $X_i$ and $X_j$, and let $P_{ij}$ be the cofactor of the element $\rho_{ij}$ in the determinant $|P|$; then
$$\rho_{12;3\dots n} = - \frac{P_{12}}{\sqrt{P_{11} P_{22}}}.$$
For example, for $n=3$,
$$\rho_{12;3} = - \frac{\rho_{12}\rho_{33} - \rho_{13}\rho_{23}}{\sqrt{(1-\rho_{13}^2)(1-\rho_{23}^2)}}.$$
The partial correlation coefficient of any two variables $X_i,\; X_j$ from $X_1,\dots,X_n$ is defined analogously. In general, the partial correlation coefficient $\rho_{12;3\dots n}$ is different from the (ordinary)
correlation coefficient $\rho_{12}$ of $X_1$ and $X_2$. The difference between $\rho_{12;3\dots n}$ and $\rho_{12}$ indicates whether $X_1$ and $X_2$ are dependent, or whether the dependence between them is a consequence of the dependence of each of them on $X_3,\dots,X_n$. If the variables $X_1,\dots,X_n$ are pairwise uncorrelated, then all partial correlation coefficients are zero.
The empirical analogue of the partial correlation coefficient $\rho_{12;3\dots n}$, the empirical partial correlation coefficient or sample partial correlation coefficient is the statistic
$$r_{12;3\dots n} = - \frac{R_{12}}{\sqrt{R_{11}R_{22}}},$$
where $R_{ij}$ is the cofactor in the determinant of the matrix $R=\|r_{ij}\|$ of the empirical correlation coefficients $r_{ij}$. If the results of the observations are independent and multivariate normally distributed, and $\rho_{12;3\dots n}$, then $r_{12;3\dots n}$ is distributed according to the probability density
$$\frac{1}{\sqrt{\pi}} \frac{\Gamma((N-n+1)/2)}{\Gamma((N-n)/2)}(1-x^2)^{(N-n-2)/2}, \quad -1<x<1$$
($N$ is the sample size). To test hypotheses about partial correlation coefficients, one uses the fact that the statistic
$$t=\sqrt{N-n}\frac{r}{\sqrt{1-r^2}},\quad \textrm{where}\ r = r_{12;3\dots n},$$
has, under the stated conditions, a
Student distribution with $N-n$ degrees of freedom.
References