|
|
Line 1: |
Line 1: |
− | A table expressing the truth values of a compound proposition in terms of the truth values of the simple propositions making it up (cf. [[Truth value|Truth value]]). A truth table has the form of the table below, in which T denotes "true" and F denotes "false" . In it, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943701.png" /> are propositional variables, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943702.png" /> is a [[Propositional formula|propositional formula]], and the truth value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943703.png" /> is determined by the truth values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943704.png" />. Each row in the table corresponds to one of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943705.png" /> possible combinations of truth values of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943706.png" /> propositions. Also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943707.png" /> is the truth value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943708.png" /> if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t0943709.png" /> have the truth values indicated in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437010.png" />-th row.''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437011.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437012.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437013.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437014.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">T</td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437015.png" /></td> <td colname="3" style="background-color:white;" colspan="1">T</td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437016.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">T</td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437017.png" /></td> <td colname="3" style="background-color:white;" colspan="1">F</td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437018.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437019.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437020.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437021.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437022.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437023.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437024.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437025.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437026.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">F</td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437027.png" /></td> <td colname="3" style="background-color:white;" colspan="1">F</td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437028.png" /></td> </tr> </tbody> </table>
| + | {{MSC|03}} |
| + | {{TEX|done}} |
| | | |
− | </td></tr> </table>
| + | A ''truth table'' is |
| + | a table expressing the truth values of a compound proposition in terms of the truth values of the simple propositions making it up (cf. |
| + | [[Truth value|Truth value]]). A truth table has the form of the table below, in which T denotes "true" and F denotes "false" . In it, $A_1,\dots,A_n$ are propositional variables, $\def\fA\{ {\mathfrak A} }\fA(A_1,\dots,A_n)$ is a |
| + | [[Propositional formula|propositional formula]], and the truth value of $\fA(A_1,\dots,A_n)$ is determined by the truth values of $\fA(A_1,\dots,A_n)$. Each row in the table corresponds to one of the $A_1,\dots,A_n$ possible combinations of truth values of the $2^n$ propositions. Also, $n$ is the truth value of $V_i$ if the $\fA(A_1,\dots,A_n)$ have the truth values indicated in the $i$-th row. |
| | | |
− | In mathematical logic, truth functions, corresponding to such logical connectives as negation, conjunction, disjunction, implication, and equivalence, are defined using truth tables. In classical propositional calculus, truth tables are used in the verification of the general validity of formulas: A formula is generally valid if and only if in the last column of its table all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094370/t09437029.png" /> are T's.
| + | <center> |
| + | {| border="1" class="wikitable" style="text-align:center; width:300px;" |
| + | |$A_1$||$\cdots$||$A_n$||$\fA(A_1,\dots,A_n)$ |
| + | |- |
| + | | $T $||$\cdots$||$ T $||$ V_1$ |
| + | |- |
| + | | $T $||$\cdots$||$ F $|| $V_2$ |
| + | |- |
| + | |$\cdot$||$\cdots$||$\cdot$||$\cdot$ |
| + | |- |
| + | |$\cdot$||$\cdots$||$\cdot$||$\cdot$ |
| + | |- |
| + | | $F$ ||$\cdots$|| $F$ ||$V_{2^n}$ |
| + | |} |
| + | </center> |
| | | |
| + | In mathematical logic, truth functions, corresponding to such logical connectives as negation, conjunction, disjunction, implication, and equivalence, are defined using truth tables. In classical propositional calculus, truth tables are used in the verification of the general validity of formulas: A formula is generally valid if and only if in the last column of its table all $V_i$ are T's. |
| | | |
| | | |
− | ====Comments==== | + | ====References==== |
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ha}}||valign="top"| W.S. Hatcher, "Foundations of mathematics", Saunders (1968) {{MR|0237320}} {{ZBL|0191.28205}} |
| | | |
| + | |- |
| + | |valign="top"|{{Ref|Kl}}||valign="top"| S.C. Kleene, "Introduction to metamathematics", North-Holland (1951) pp. 288 {{MR|1234051}} {{MR|1570642}} {{MR|0051790}} {{ZBL|0875.03002}} {{ZBL|0604.03002}} {{ZBL|0109.00509}} {{ZBL|0047.00703}} |
| | | |
− | ====References====
| + | |- |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951) pp. 288</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W.S. Hatcher, "Foundations of mathematics" , Saunders (1968)</TD></TR></table>
| + | |} |
2020 Mathematics Subject Classification: Primary: 03-XX [MSN][ZBL]
A truth table is
a table expressing the truth values of a compound proposition in terms of the truth values of the simple propositions making it up (cf.
Truth value). A truth table has the form of the table below, in which T denotes "true" and F denotes "false" . In it, $A_1,\dots,A_n$ are propositional variables, $\def\fA\{ {\mathfrak A} }\fA(A_1,\dots,A_n)$ is a
propositional formula, and the truth value of $\fA(A_1,\dots,A_n)$ is determined by the truth values of $\fA(A_1,\dots,A_n)$. Each row in the table corresponds to one of the $A_1,\dots,A_n$ possible combinations of truth values of the $2^n$ propositions. Also, $n$ is the truth value of $V_i$ if the $\fA(A_1,\dots,A_n)$ have the truth values indicated in the $i$-th row.
$A_1$ |
$\cdots$ |
$A_n$ |
$\fA(A_1,\dots,A_n)$
|
$T $ |
$\cdots$ |
$ T $ |
$ V_1$
|
$T $ |
$\cdots$ |
$ F $ |
$V_2$
|
$\cdot$ |
$\cdots$ |
$\cdot$ |
$\cdot$
|
$\cdot$ |
$\cdots$ |
$\cdot$ |
$\cdot$
|
$F$ |
$\cdots$ |
$F$ |
$V_{2^n}$
|
In mathematical logic, truth functions, corresponding to such logical connectives as negation, conjunction, disjunction, implication, and equivalence, are defined using truth tables. In classical propositional calculus, truth tables are used in the verification of the general validity of formulas: A formula is generally valid if and only if in the last column of its table all $V_i$ are T's.
References