Difference between revisions of "Inverse matrix"
From Encyclopedia of Mathematics
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | ''of a square matrix | + | {{TEX|done}} |
+ | ''of a square matrix $A$ over a field $k$'' | ||
− | The matrix | + | The matrix $A^{-1}$ for which $AA^{-1}=A^{-1}A=E$, where $E$ is the identity matrix. Invertibility of a matrix is equivalent to its being non-singular (see [[Non-singular matrix|Non-singular matrix]]). For the matrix $A=\|\alpha_{ij}\|$, the inverse matrix is $A^{-1}=\|\gamma_{ij}\|$ where |
− | + | $$\gamma_{ij}=\frac{A_{ji}}{\det A},$$ | |
− | where | + | where $A_{ij}$ is the [[Cofactor|cofactor]] of the element $\alpha_{ij}$. For methods of computing the inverse of a matrix see [[Inversion of a matrix|Inversion of a matrix]]. |
Revision as of 10:38, 6 September 2014
of a square matrix $A$ over a field $k$
The matrix $A^{-1}$ for which $AA^{-1}=A^{-1}A=E$, where $E$ is the identity matrix. Invertibility of a matrix is equivalent to its being non-singular (see Non-singular matrix). For the matrix $A=\|\alpha_{ij}\|$, the inverse matrix is $A^{-1}=\|\gamma_{ij}\|$ where
$$\gamma_{ij}=\frac{A_{ji}}{\det A},$$
where $A_{ij}$ is the cofactor of the element $\alpha_{ij}$. For methods of computing the inverse of a matrix see Inversion of a matrix.
How to Cite This Entry:
Inverse matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inverse_matrix&oldid=13699
Inverse matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inverse_matrix&oldid=13699