Difference between revisions of "Olevskii transform"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 15 formulas out of 17 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 17 formulas, 15 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|partial}} | ||
The [[Integral transform|integral transform]] | The [[Integral transform|integral transform]] | ||
− | + | \begin{equation} \tag{a1} F ( \tau ) = \end{equation} | |
− | <table class="eq" style="width:100%;"> <tr><td | + | <table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o120/o120020/o1200202.png"/></td> </tr></table> |
− | where | + | where $\square _ { 2 } F _ { 1 } ( a , b ; c ; z )$ is a Gauss [[Hypergeometric function|hypergeometric function]]. It was introduced by M.N. Olevskii in [[#References|[a1]]]. |
− | Letting | + | Letting $a = 1 / 2$, one obtains the [[Mehler–Fock transform|Mehler–Fock transform]]. By changing the variable $x = \operatorname { sinh } ^ { - 2 } t$ and the respective parameters of the Gauss function, one obtains the Fourier–Jacobi transform [[#References|[a2]]]. |
One can show that the Olevskii transform is the composition of the [[Kontorovich-Lebedev-transform(2)|Kontorovich–Lebedev transform]] and the Hankel transform (cf. [[Integral transform|Integral transform]]; [[Hardy transform|Hardy transform]]). | One can show that the Olevskii transform is the composition of the [[Kontorovich-Lebedev-transform(2)|Kontorovich–Lebedev transform]] and the Hankel transform (cf. [[Integral transform|Integral transform]]; [[Hardy transform|Hardy transform]]). | ||
− | The Gauss function in the integral (a1) is the hypergeometric series for | + | The Gauss function in the integral (a1) is the hypergeometric series for $x > 1$ and for $0 < x \leq 1$ one can understand it as an [[Analytic continuation|analytic continuation]], which can be obtained from the Mellin–Barnes integral representation [[#References|[a3]]]. |
− | The following integral transform is also called the Olevskii transform. It is an integral over the index | + | The following integral transform is also called the Olevskii transform. It is an integral over the index $\tau$ of the Gauss function, |
− | + | \begin{equation} \tag{a2} F ( x ) = \frac { x ^ { - a } ( 1 + x ) ^ { 2 a - c } } { \Gamma ( c ) } \times \end{equation} | |
− | + | \begin{equation*} \times \int _ { - \infty } ^ { \infty } \tau \left| \Gamma \left( c - a + \frac { i \tau } { 2 } \right) \right| ^ { 2 } \times \times \square _ { 2 } F _ { 1 } \left( a + \frac { i \tau } { 2 } , a - \frac { i \tau } { 2 } ; c ; - \frac { 1 } { x } \right) f ( \tau ) d \tau. \end{equation*} | |
− | Here, | + | Here, $f$ is an arbitrary odd function belonging to the space $L _ { 2 } ( \mathbf{R} ; \omega ( \tau ) )$, where |
− | + | \begin{equation*} \omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } \right| ^ { 2 } . \end{equation*} | |
− | The transform (a2) maps this space onto the space | + | The transform (a2) maps this space onto the space $L _ { 2 } ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ and the [[Parseval equality|Parseval equality]] holds: |
− | + | \begin{equation*} \int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } = \end{equation*} | |
− | + | \begin{equation*} = 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau. \end{equation*} | |
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> M.N. Olevskii, "On the representation of an arbitrary function by integral with the kernel involving the hypergeometric function" ''Dokl. Akad. Nauk SSSR'' , '''69''' : 1 (1949) pp. 11–14 (In Russian)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> T.H. Koornwinder, "Jacobi functions and analysis on noncompact semisimple Lie groups" , ''Special Functions: Group Theoretical Aspects and Applications'' , Reidel (1984) pp. 1–85</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> S.B. Yakubovich, "Index transforms" , World Sci. (1996) pp. Chap. 7</td></tr></table> |
Revision as of 16:59, 1 July 2020
\begin{equation} \tag{a1} F ( \tau ) = \end{equation}
where $\square _ { 2 } F _ { 1 } ( a , b ; c ; z )$ is a Gauss hypergeometric function. It was introduced by M.N. Olevskii in [a1].
Letting $a = 1 / 2$, one obtains the Mehler–Fock transform. By changing the variable $x = \operatorname { sinh } ^ { - 2 } t$ and the respective parameters of the Gauss function, one obtains the Fourier–Jacobi transform [a2].
One can show that the Olevskii transform is the composition of the Kontorovich–Lebedev transform and the Hankel transform (cf. Integral transform; Hardy transform).
The Gauss function in the integral (a1) is the hypergeometric series for $x > 1$ and for $0 < x \leq 1$ one can understand it as an analytic continuation, which can be obtained from the Mellin–Barnes integral representation [a3].
The following integral transform is also called the Olevskii transform. It is an integral over the index $\tau$ of the Gauss function,
\begin{equation} \tag{a2} F ( x ) = \frac { x ^ { - a } ( 1 + x ) ^ { 2 a - c } } { \Gamma ( c ) } \times \end{equation}
\begin{equation*} \times \int _ { - \infty } ^ { \infty } \tau \left| \Gamma \left( c - a + \frac { i \tau } { 2 } \right) \right| ^ { 2 } \times \times \square _ { 2 } F _ { 1 } \left( a + \frac { i \tau } { 2 } , a - \frac { i \tau } { 2 } ; c ; - \frac { 1 } { x } \right) f ( \tau ) d \tau. \end{equation*}
Here, $f$ is an arbitrary odd function belonging to the space $L _ { 2 } ( \mathbf{R} ; \omega ( \tau ) )$, where
\begin{equation*} \omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } \right| ^ { 2 } . \end{equation*}
The transform (a2) maps this space onto the space $L _ { 2 } ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ and the Parseval equality holds:
\begin{equation*} \int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } = \end{equation*}
\begin{equation*} = 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau. \end{equation*}
References
[a1] | M.N. Olevskii, "On the representation of an arbitrary function by integral with the kernel involving the hypergeometric function" Dokl. Akad. Nauk SSSR , 69 : 1 (1949) pp. 11–14 (In Russian) |
[a2] | T.H. Koornwinder, "Jacobi functions and analysis on noncompact semisimple Lie groups" , Special Functions: Group Theoretical Aspects and Applications , Reidel (1984) pp. 1–85 |
[a3] | S.B. Yakubovich, "Index transforms" , World Sci. (1996) pp. Chap. 7 |
Olevskii transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Olevskii_transform&oldid=13573