Namespaces
Variants
Actions

Difference between revisions of "Gauss kernel"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎References: Feller: internal link)
Line 18: Line 18:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Butzer,   R. Nessel,   "Fourier analysis and approximation" , '''I''' , Birkhäuser (1971)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Courant,   D. Hilbert,   "Methods of mathematical physics" , '''II''' , Wiley (1962)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Feller,   "An introduction to probability theory and its applications" , '''2''' , Springer (1976) (Edition: Second)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.C. Titchmarsh,   "Introduction to the theory of Fourier integrals" , Clarendon Press (1937)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Weierstrass,   "Ueber die analytische Darstellbarkeit sogenannter willkurlichen Functionen reeler Argumente" ''Berliner Sitzungsberichte'' (1985) pp. 633–639; 789–805</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Butzer, R. Nessel, "Fourier analysis and approximation", '''I''', Birkhäuser (1971)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics", '''II''', Wiley (1962)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its  applications"]], '''2''', Springer (1976) (Edition: Second)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals", Clarendon Press (1937)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Weierstrass, "Ueber die analytische Darstellbarkeit sogenannter willkurlichen Functionen reeler Argumente" ''Berliner Sitzungsberichte'' (1985) pp. 633–639; 789–805</TD></TR></table>

Revision as of 09:09, 4 May 2012

The -dimensional Gauss (or Weierstrass) kernel

with a positive constant, , , is the fundamental solution of the -dimensional heat equation . Moreover, this kernel is an approximate identity in that the Gauss–Weierstrass singular integral at the function ,

satisfies almost everywhere, for example, whenever for some ; see [a4]. Thus is a solution of the heat equation for , having the initial "temperature" .

In the theory of Markov processes (cf. Markov process) the Gauss kernel gives the transition probability density of the Wiener–Lévy process (or of Brownian motion). The semi-group property of the Gauss kernel

is essential here.

References

[a1] P. Butzer, R. Nessel, "Fourier analysis and approximation", I, Birkhäuser (1971)
[a2] R. Courant, D. Hilbert, "Methods of mathematical physics", II, Wiley (1962)
[a3] W. Feller, "An introduction to probability theory and its applications", 2, Springer (1976) (Edition: Second)
[a4] E.C. Titchmarsh, "Introduction to the theory of Fourier integrals", Clarendon Press (1937)
[a5] K. Weierstrass, "Ueber die analytische Darstellbarkeit sogenannter willkurlichen Functionen reeler Argumente" Berliner Sitzungsberichte (1985) pp. 633–639; 789–805
How to Cite This Entry:
Gauss kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_kernel&oldid=13441
This article was adapted from an original article by R. Kerman (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article