Difference between revisions of "Radon measure"
(Importing text file) |
|||
Line 1: | Line 1: | ||
''inner regular measure'' | ''inner regular measure'' | ||
− | + | [[Category:Classical measure theory]] | |
− | + | {{TEX|done}} | |
− | + | {{MSC|28A33}} | |
+ | [[Category:classical measure theory]] | ||
+ | {{TEX|done}} | ||
− | + | A finite measure $\mu$ (cf. [[Measure in a topological vector space|Measure in a topological vector space]]) defined on the $\sigma$-algebra $\mathcal(B) (X)$ of [[Borel set|Borel sets]] | |
− | + | of a topological space $X$ and having the following property: | |
+ | for every $\varepsilon > 0$ there is a compact | ||
+ | set $K$ such that $\mu (X\setminus K)<\varepsilon$. It was introduced by J. Radon (1913), whose original constructions referred to measures on the Borel $\sigma$-algebra of the Euclidean space $\mathbb R^n$. A topological space $X$ is called a Radon space if every finite measure defined on the $\sigma$-algebra $\mathcal{B} (X)$ is a Radon measure. | ||
− | + | Any Radon measure is tight (also called inner regular): for any Borel $B\subset X$ one has | |
+ | \[ | ||
+ | \mu (B)= \sup \{\mu(K): K\subset B, \mbox{ $K$ compact.}. | ||
+ | \] | ||
+ | If $\mathcal{B} (X)$ is countably generated, $X$ is a Radon space if and only if it is Borel isomorphic to a universally measurable subset of $[0,1]^{\mathbb N}$ (or any other uncountable compact metrizable space). In particular, any polish space, or more generally Suslin space in the sense of Bourbaki, is Radon. | ||
− | + | One can also define non-finite (non-negative) Radon measures; they are tight and take finite values on compact subsets. If $X$ has a countable basis, they are $\sigma$-finite. | |
− | + | Following N. Bourbaki (and ideas going back to W.H. Young and Ch. de la Vallée-Poussin), a (non-negative) Radon measure on, say, a locally compact space $X$ is a continuous linear functional $L$ on the space $C_c (X)$ of continuous functions with compact support | |
+ | (endowed with its natural inductive topology) which is nonnegative, i.e. such that | ||
+ | $L(f)\geq 0$ whenever $f\geq 0$. One can prove with the help of the [[Riesz representation theorem]] (which deals with the case $X$ compact) that any non-negative and bounded Radon measure in this sense is the restriction to $C_c (X)$ of the integral with respect to a unique (non-finite) Radon measure. | ||
− | + | ====References==== | |
+ | {| | ||
+ | |- | ||
+ | |valign="top"|{{Ref|AmFuPa}}|| L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. {{MR|1857292}}{{ZBL|0957.49001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Bo}}|| N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}} {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}} {{ZBL|1095.28001}} {{ZBL|0156.06001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Bi}}|| P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ma}}|| P. Mattila, "Geometry of sets and measures in euclidean spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. {{MR|1333890}} {{ZBL|0911.28005}} | ||
+ | |- | ||
+ | |} |
Revision as of 13:13, 21 July 2012
inner regular measure 2020 Mathematics Subject Classification: Primary: 28A33 [MSN][ZBL]
A finite measure $\mu$ (cf. Measure in a topological vector space) defined on the $\sigma$-algebra $\mathcal(B) (X)$ of Borel sets of a topological space $X$ and having the following property: for every $\varepsilon > 0$ there is a compact set $K$ such that $\mu (X\setminus K)<\varepsilon$. It was introduced by J. Radon (1913), whose original constructions referred to measures on the Borel $\sigma$-algebra of the Euclidean space $\mathbb R^n$. A topological space $X$ is called a Radon space if every finite measure defined on the $\sigma$-algebra $\mathcal{B} (X)$ is a Radon measure.
Any Radon measure is tight (also called inner regular): for any Borel $B\subset X$ one has \[ \mu (B)= \sup \{\mu(K): K\subset B, \mbox{ '"`UNIQ-MathJax14-QINU`"' compact.}. \] If $\mathcal{B} (X)$ is countably generated, $X$ is a Radon space if and only if it is Borel isomorphic to a universally measurable subset of $[0,1]^{\mathbb N}$ (or any other uncountable compact metrizable space). In particular, any polish space, or more generally Suslin space in the sense of Bourbaki, is Radon.
One can also define non-finite (non-negative) Radon measures; they are tight and take finite values on compact subsets. If $X$ has a countable basis, they are $\sigma$-finite.
Following N. Bourbaki (and ideas going back to W.H. Young and Ch. de la Vallée-Poussin), a (non-negative) Radon measure on, say, a locally compact space $X$ is a continuous linear functional $L$ on the space $C_c (X)$ of continuous functions with compact support (endowed with its natural inductive topology) which is nonnegative, i.e. such that $L(f)\geq 0$ whenever $f\geq 0$. One can prove with the help of the Riesz representation theorem (which deals with the case $X$ compact) that any non-negative and bounded Radon measure in this sense is the restriction to $C_c (X)$ of the integral with respect to a unique (non-finite) Radon measure.
References
[AmFuPa] | L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001 |
[Bo] | N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001 |
[DS] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523 |
[Bi] | P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201 |
[Ma] | P. Mattila, "Geometry of sets and measures in euclidean spaces. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005 |
Radon measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Radon_measure&oldid=13045