Difference between revisions of "Secant"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
One of the [[Trigonometric functions|trigonometric functions]]: | One of the [[Trigonometric functions|trigonometric functions]]: | ||
− | + | $$y=\sec x=\frac{1}{\cos x};$$ | |
− | another notation is | + | another notation is $\operatorname{sc}x$. Its domain of definition is the whole real line apart from the points |
− | + | $$x=\frac\pi2(2n+1),\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}\tag{*}$$ | |
− | The secant is an unbounded even | + | The secant is an unbounded even $2\pi$-periodic function. The derivative of the secant is |
− | + | $$(\sec x)'=\frac{\sin x}{\cos^2x}=(\tan x)(\sec x).$$ | |
The indefinite integral of the secant is | The indefinite integral of the secant is | ||
− | + | $$\int\sec xdx=\ln\left|\tan\left(\frac\pi4+\frac x2\right)\right|+C.$$ | |
The secant can be expanded in a series: | The secant can be expanded in a series: | ||
− | + | $$\sec x=$$ | |
− | + | $$=\frac{\pi}{(\pi/2)^2-x^2}-\frac{3\pi}{(3\pi/2)^2-x^2}+\frac{5\pi}{(5\pi/2)^2-x^2}-\mathinner{\ldotp\ldotp\ldotp\ldotp}$$ | |
====Comments==== | ====Comments==== | ||
− | The series expansion is valid in the domain of definition of | + | The series expansion is valid in the domain of definition of $\sec$, i.e. not for the points \ref{*}. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. §4.3</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. §4.3</TD></TR></table> |
Revision as of 14:02, 13 November 2014
One of the trigonometric functions:
$$y=\sec x=\frac{1}{\cos x};$$
another notation is $\operatorname{sc}x$. Its domain of definition is the whole real line apart from the points
$$x=\frac\pi2(2n+1),\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}\tag{*}$$
The secant is an unbounded even $2\pi$-periodic function. The derivative of the secant is
$$(\sec x)'=\frac{\sin x}{\cos^2x}=(\tan x)(\sec x).$$
The indefinite integral of the secant is
$$\int\sec xdx=\ln\left|\tan\left(\frac\pi4+\frac x2\right)\right|+C.$$
The secant can be expanded in a series:
$$\sec x=$$
$$=\frac{\pi}{(\pi/2)^2-x^2}-\frac{3\pi}{(3\pi/2)^2-x^2}+\frac{5\pi}{(5\pi/2)^2-x^2}-\mathinner{\ldotp\ldotp\ldotp\ldotp}$$
Comments
The series expansion is valid in the domain of definition of $\sec$, i.e. not for the points \ref{*}.
References
[a1] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
[a2] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. §4.3 |
Secant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Secant&oldid=13004