Namespaces
Variants
Actions

Difference between revisions of "Neumann eigenvalue"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 47 formulas out of 48 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
Consider a bounded domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300601.png" /> with a piecewise smooth boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300602.png" />. A number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300603.png" /> is a Neumann eigenvalue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300604.png" /> if there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300605.png" /> (a Neumann eigenfunction) satisfying the following Neumann boundary value problem (cf. also [[Neumann boundary conditions|Neumann boundary conditions]]):
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
Out of 48 formulas, 47 were replaced by TEX code.-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300607.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
{{TEX|semi-auto}}{{TEX|partial}}
 +
Consider a bounded domain $\Omega \subset \mathbf{R} ^ { n }\partial \Omega$. A number \mu is a Neumann eigenvalue of \Omega if there exists a function u \in C ^ { 2 } ( \Omega ) \cap C ^ { 0 } ( \overline { \Omega } ) (a Neumann eigenfunction) satisfying the following Neumann boundary value problem (cf. also [[Neumann boundary conditions|Neumann boundary conditions]]):
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300608.png" /> is the [[Laplace operator|Laplace operator]] (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n1300609.png" />). For more general definitions, see [[#References|[a8]]]. Neumann eigenvalues (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006010.png" />) appear naturally when considering the vibrations of a free membrane (cf. also [[Natural frequencies|Natural frequencies]]). In fact, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006011.png" /> the non-zero Neumann eigenvalues are proportional to the square of the eigenfrequencies of the membrane with free boundary. Provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006012.png" /> is bounded and the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006013.png" /> is sufficiently regular, the Neumann Laplacian has a discrete spectrum of infinitely many non-negative eigenvalues with no finite accumulation point:
+
\begin{equation} \tag{a1} - \Delta u = \mu u \text { in } \Omega, \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
\begin{equation} \tag{a2} \frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega, \end{equation}
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006015.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006016.png" />). The Neumann eigenvalues are characterized by the max-min principle [[#References|[a3]]]:
+
where \Delta is the [[Laplace operator|Laplace operator]] (i.e., $\Delta = \sum _ { i = 1 } ^ { n } \partial ^ { 2 } / \partial x _ { i } ^ { 2 }$). For more general definitions, see [[#References|[a8]]]. Neumann eigenvalues (with n = 2) appear naturally when considering the vibrations of a free membrane (cf. also [[Natural frequencies|Natural frequencies]]). In fact, for n = 2 the non-zero Neumann eigenvalues are proportional to the square of the eigenfrequencies of the membrane with free boundary. Provided \Omega is bounded and the boundary \partial \Omega is sufficiently regular, the Neumann Laplacian has a discrete spectrum of infinitely many non-negative eigenvalues with no finite accumulation point:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation} \tag{a3} 0 = \mu _ { 1 } ( \Omega ) \leq \mu _ { 2 } ( \Omega ) \leq \dots \end{equation}
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006018.png" /> is taken over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006019.png" /> orthogonal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006020.png" />, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006021.png" /> is taken over all the choices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006022.png" />. For simply-connected domains the first eigenfunction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006023.png" />, corresponding to the eigenvalue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006024.png" /> is constant throughout the domain. All the other eigenvalues are positive. While Dirichlet eigenvalues satisfy stringent constraints (e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006025.png" /> cannot exceed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006026.png" /> for any bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006027.png" />, [[#References|[a1]]]; see also [[Dirichlet eigenvalue|Dirichlet eigenvalue]]), no such constraints exist for Neumann eigenvalues, other than the fact that they are non-negative. In fact, given any finite sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006028.png" />, there is an open, bounded, smooth, simply-connected domain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006029.png" /> having this sequence as the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006030.png" /> Neumann eigenvalues of the Laplacian on that domain [[#References|[a2]]]. Though it is obvious from the variational characterization of both Dirichlet and Neumann eigenvalues (see (a4)) that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006031.png" />, L. Friedlander [[#References|[a4]]] proved the stronger result
+
(\mu _ { k } \rightarrow \infty as k  \rightarrow \infty). The Neumann eigenvalues are characterized by the max-min principle [[#References|[a3]]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
\begin{equation} \tag{a4} \mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }, \end{equation}
  
How far the first non-trivial Neumann eigenvalue is from zero for a convex domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006033.png" /> is given through the optimal inequality [[#References|[a7]]]
+
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006018.png"/> is taken over all u \in H ^ { 1 } ( \Omega ) orthogonal to \varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H ^ { 1 } ( \Omega ), and the \operatorname {sup} is taken over all the choices of \{ \varphi _ { i } \} _ { i = 1 } ^ { k - 1 }. For simply-connected domains the first eigenfunction u_1, corresponding to the eigenvalue \mu _ { 1 } = 0 is constant throughout the domain. All the other eigenvalues are positive. While Dirichlet eigenvalues satisfy stringent constraints (e.g., \lambda _ { 2 } / \lambda _ { 1 } cannot exceed 2.539\dots for any bounded domain in \mathbf{R} ^ { 2 }, [[#References|[a1]]]; see also [[Dirichlet eigenvalue|Dirichlet eigenvalue]]), no such constraints exist for Neumann eigenvalues, other than the fact that they are non-negative. In fact, given any finite sequence \mu _ { 1 } = 0 &lt; \ldots &lt; \mu _ { N }, there is an open, bounded, smooth, simply-connected domain of \mathbf{R} ^ { 2 } having this sequence as the first N Neumann eigenvalues of the Laplacian on that domain [[#References|[a2]]]. Though it is obvious from the variational characterization of both Dirichlet and Neumann eigenvalues (see (a4)) that \mu _ { k } \leq \lambda _ { k }, L. Friedlander [[#References|[a4]]] proved the stronger result
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
\begin{equation} \tag{a5} \mu _ { k + 1 } \leq \lambda _ { k } ,\, k = 1, 2,\dots . \end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006035.png" /> is the diameter of the domain. There are many more isoperimetric inequalities for Neumann eigenvalues (see [[Rayleigh–Faber–Krahn inequality|Rayleigh–Faber–Krahn inequality]]).
+
How far the first non-trivial Neumann eigenvalue is from zero for a convex domain in \mathbf{R} ^ { 2 } is given through the optimal inequality [[#References|[a7]]]
  
For large values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006036.png" />, H. Weyl proved [[#References|[a9]]]
+
\begin{equation} \tag{a6} \mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }, \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
+
where d is the diameter of the domain. There are many more isoperimetric inequalities for Neumann eigenvalues (see [[Rayleigh–Faber–Krahn inequality|Rayleigh–Faber–Krahn inequality]]).
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006039.png" /> are, respectively, the volumes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006040.png" /> and of the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006041.png" />.
+
For large values of k, H. Weyl proved [[#References|[a9]]]
 +
 
 +
\begin{equation} \tag{a7} \mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }, \end{equation}
 +
 
 +
where | \Omega | and $C _ { n } = \pi ^ { n / 2 } / \Gamma ( n / 2 + 1 )$ are, respectively, the volumes of \Omega and of the unit ball in ${\bf R} ^ { n }$.
  
 
For any plane-covering domain (i.e., a domain that can be used to tile the plane without gaps, nor overlaps, allowing rotations, translations and reflections of itself), G. Pólya [[#References|[a6]]] proved that
 
For any plane-covering domain (i.e., a domain that can be used to tile the plane without gaps, nor overlaps, allowing rotations, translations and reflections of itself), G. Pólya [[#References|[a6]]] proved that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a8)</td></tr></table>
+
\begin{equation} \tag{a8} \mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots , \end{equation}
  
and conjectured the same bound for any bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006043.png" />. This is equivalent to saying that the Weyl asymptotics of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006044.png" /> is an upper bound for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006045.png" />. The analogous conjecture in dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006046.png" /> is
+
and conjectured the same bound for any bounded domain in \mathbf{R} ^ { 2 }. This is equivalent to saying that the Weyl asymptotics of \mu _ { k } is an upper bound for \mu _ { k }. The analogous conjecture in dimension $n$ is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006047.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a9)</td></tr></table>
+
\begin{equation} \tag{a9} \mu _ { k + 1 } \leq \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } ,\, k = 0,1\dots. \end{equation}
  
 
The most significant result towards the proof of Pólya's conjecture for Neumann eigenvalues is the result by P. Kröger [[#References|[a5]]]:
 
The most significant result towards the proof of Pólya's conjecture for Neumann eigenvalues is the result by P. Kröger [[#References|[a5]]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006048.png" /></td> </tr></table>
+
\begin{equation*} \sum _ { i = 1 } ^ { k } \mu _ { i } \leq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 1,2, \dots . \end{equation*}
  
 
A proof of Pólya's conjecture for both Dirichlet and Neumann eigenvalues would imply Friedlander's result (a5).
 
A proof of Pólya's conjecture for both Dirichlet and Neumann eigenvalues would imply Friedlander's result (a5).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M.S. Ashbaugh,  R.D. Benguria,  "A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions"  ''Ann. of Math.'' , '''135'''  (1992)  pp. 601–628</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  Y. Colin de Vérdiere,  "Construction de laplaciens dont une partie finie du spectre est donnée"  ''Ann. Sci. École Norm. Sup.'' , '''20''' :  4  (1987)  pp. 599–615</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methoden der mathematischen Physik" , '''I''' , Springer  (1931)  (English transl.: Methods of Mathematical Physics, vol. I., Interscience, 1953)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  L. Friedlander,  "Some inequalities between Dirichlet and Neumann eigenvalues"  ''Arch. Rational Mech. Anal.'' , '''116'''  (1991)  pp. 153–160</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  P. Kröger,  "Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean Space"  ''J. Funct. Anal.'' , '''106'''  (1992)  pp. 353–357</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  G. Polya,  "On the eigenvalues of vibrating membranes"  ''Proc. London Math. Soc.'' , '''11''' :  3  (1961)  pp. 419–433</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  L.E. Payne,  H.F. Weinberger,  "An optimal Poincaré inequality for convex domains"  ''Arch. Rational Mech. Anal.'' , '''5'''  (1960)  pp. 286–292</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  M. Reed,  B. Simon,  "Methods of modern mathematical physics IV: Analysis of operators" , Acad. Press  (1978)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  H. Weyl,  "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen"  ''Math. Ann.'' , '''71'''  (1911)  pp. 441–479</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  M.S. Ashbaugh,  R.D. Benguria,  "A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions"  ''Ann. of Math.'' , '''135'''  (1992)  pp. 601–628</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  Y. Colin de Vérdiere,  "Construction de laplaciens dont une partie finie du spectre est donnée"  ''Ann. Sci. École Norm. Sup.'' , '''20''' :  4  (1987)  pp. 599–615</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  R. Courant,  D. Hilbert,  "Methoden der mathematischen Physik" , '''I''' , Springer  (1931)  (English transl.: Methods of Mathematical Physics, vol. I., Interscience, 1953)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  L. Friedlander,  "Some inequalities between Dirichlet and Neumann eigenvalues"  ''Arch. Rational Mech. Anal.'' , '''116'''  (1991)  pp. 153–160</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  P. Kröger,  "Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean Space"  ''J. Funct. Anal.'' , '''106'''  (1992)  pp. 353–357</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  G. Polya,  "On the eigenvalues of vibrating membranes"  ''Proc. London Math. Soc.'' , '''11''' :  3  (1961)  pp. 419–433</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  L.E. Payne,  H.F. Weinberger,  "An optimal Poincaré inequality for convex domains"  ''Arch. Rational Mech. Anal.'' , '''5'''  (1960)  pp. 286–292</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  M. Reed,  B. Simon,  "Methods of modern mathematical physics IV: Analysis of operators" , Acad. Press  (1978)</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  H. Weyl,  "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen"  ''Math. Ann.'' , '''71'''  (1911)  pp. 441–479</td></tr></table>

Revision as of 15:19, 1 July 2020

Consider a bounded domain \Omega \subset \mathbf{R} ^ { n } with a piecewise smooth boundary \partial \Omega. A number \mu is a Neumann eigenvalue of \Omega if there exists a function u \in C ^ { 2 } ( \Omega ) \cap C ^ { 0 } ( \overline { \Omega } ) (a Neumann eigenfunction) satisfying the following Neumann boundary value problem (cf. also Neumann boundary conditions):

\begin{equation} \tag{a1} - \Delta u = \mu u \text { in } \Omega, \end{equation}

\begin{equation} \tag{a2} \frac { \partial u } { \partial n } = 0 \text { in } \partial \Omega, \end{equation}

where \Delta is the Laplace operator (i.e., \Delta = \sum _ { i = 1 } ^ { n } \partial ^ { 2 } / \partial x _ { i } ^ { 2 }). For more general definitions, see [a8]. Neumann eigenvalues (with n = 2) appear naturally when considering the vibrations of a free membrane (cf. also Natural frequencies). In fact, for n = 2 the non-zero Neumann eigenvalues are proportional to the square of the eigenfrequencies of the membrane with free boundary. Provided \Omega is bounded and the boundary \partial \Omega is sufficiently regular, the Neumann Laplacian has a discrete spectrum of infinitely many non-negative eigenvalues with no finite accumulation point:

\begin{equation} \tag{a3} 0 = \mu _ { 1 } ( \Omega ) \leq \mu _ { 2 } ( \Omega ) \leq \dots \end{equation}

(\mu _ { k } \rightarrow \infty as k \rightarrow \infty). The Neumann eigenvalues are characterized by the max-min principle [a3]:

\begin{equation} \tag{a4} \mu _ { k } = \operatorname { sup } \operatorname { inf } \frac { \int _ { \Omega } ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }, \end{equation}

where the is taken over all u \in H ^ { 1 } ( \Omega ) orthogonal to \varphi _ { 1 } , \dots , \varphi _ { k - 1 } \in H ^ { 1 } ( \Omega ), and the \operatorname {sup} is taken over all the choices of \{ \varphi _ { i } \} _ { i = 1 } ^ { k - 1 }. For simply-connected domains the first eigenfunction u_1, corresponding to the eigenvalue \mu _ { 1 } = 0 is constant throughout the domain. All the other eigenvalues are positive. While Dirichlet eigenvalues satisfy stringent constraints (e.g., \lambda _ { 2 } / \lambda _ { 1 } cannot exceed 2.539\dots for any bounded domain in \mathbf{R} ^ { 2 }, [a1]; see also Dirichlet eigenvalue), no such constraints exist for Neumann eigenvalues, other than the fact that they are non-negative. In fact, given any finite sequence \mu _ { 1 } = 0 < \ldots < \mu _ { N }, there is an open, bounded, smooth, simply-connected domain of \mathbf{R} ^ { 2 } having this sequence as the first N Neumann eigenvalues of the Laplacian on that domain [a2]. Though it is obvious from the variational characterization of both Dirichlet and Neumann eigenvalues (see (a4)) that \mu _ { k } \leq \lambda _ { k }, L. Friedlander [a4] proved the stronger result

\begin{equation} \tag{a5} \mu _ { k + 1 } \leq \lambda _ { k } ,\, k = 1, 2,\dots . \end{equation}

How far the first non-trivial Neumann eigenvalue is from zero for a convex domain in \mathbf{R} ^ { 2 } is given through the optimal inequality [a7]

\begin{equation} \tag{a6} \mu _ { 1 } \geq \frac { \pi ^ { 2 } } { d ^ { 2 } }, \end{equation}

where d is the diameter of the domain. There are many more isoperimetric inequalities for Neumann eigenvalues (see Rayleigh–Faber–Krahn inequality).

For large values of k, H. Weyl proved [a9]

\begin{equation} \tag{a7} \mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }, \end{equation}

where | \Omega | and C _ { n } = \pi ^ { n / 2 } / \Gamma ( n / 2 + 1 ) are, respectively, the volumes of \Omega and of the unit ball in {\bf R} ^ { n }.

For any plane-covering domain (i.e., a domain that can be used to tile the plane without gaps, nor overlaps, allowing rotations, translations and reflections of itself), G. Pólya [a6] proved that

\begin{equation} \tag{a8} \mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots , \end{equation}

and conjectured the same bound for any bounded domain in \mathbf{R} ^ { 2 }. This is equivalent to saying that the Weyl asymptotics of \mu _ { k } is an upper bound for \mu _ { k }. The analogous conjecture in dimension n is

\begin{equation} \tag{a9} \mu _ { k + 1 } \leq \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } ,\, k = 0,1\dots. \end{equation}

The most significant result towards the proof of Pólya's conjecture for Neumann eigenvalues is the result by P. Kröger [a5]:

\begin{equation*} \sum _ { i = 1 } ^ { k } \mu _ { i } \leq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 1,2, \dots . \end{equation*}

A proof of Pólya's conjecture for both Dirichlet and Neumann eigenvalues would imply Friedlander's result (a5).

References

[a1] M.S. Ashbaugh, R.D. Benguria, "A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions" Ann. of Math. , 135 (1992) pp. 601–628
[a2] Y. Colin de Vérdiere, "Construction de laplaciens dont une partie finie du spectre est donnée" Ann. Sci. École Norm. Sup. , 20 : 4 (1987) pp. 599–615
[a3] R. Courant, D. Hilbert, "Methoden der mathematischen Physik" , I , Springer (1931) (English transl.: Methods of Mathematical Physics, vol. I., Interscience, 1953)
[a4] L. Friedlander, "Some inequalities between Dirichlet and Neumann eigenvalues" Arch. Rational Mech. Anal. , 116 (1991) pp. 153–160
[a5] P. Kröger, "Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean Space" J. Funct. Anal. , 106 (1992) pp. 353–357
[a6] G. Polya, "On the eigenvalues of vibrating membranes" Proc. London Math. Soc. , 11 : 3 (1961) pp. 419–433
[a7] L.E. Payne, H.F. Weinberger, "An optimal Poincaré inequality for convex domains" Arch. Rational Mech. Anal. , 5 (1960) pp. 286–292
[a8] M. Reed, B. Simon, "Methods of modern mathematical physics IV: Analysis of operators" , Acad. Press (1978)
[a9] H. Weyl, "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen" Math. Ann. , 71 (1911) pp. 441–479
How to Cite This Entry:
Neumann eigenvalue. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Neumann_eigenvalue&oldid=12806
This article was adapted from an original article by Rafael D. Benguria (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article