Difference between revisions of "Whittaker equation"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
A linear homogeneous ordinary differential equation of the second order: | A linear homogeneous ordinary differential equation of the second order: | ||
− | + | $$w''+\left(\frac{1/4-\mu^2}{z^2}+\frac\lambda z-\frac14\right)w=0,\tag{*}$$ | |
− | where the variables | + | where the variables $z,w$ and the parameters $\lambda,\mu$ may take arbitrary complex values. Equation \ref{*} represents the reduced form of a degenerate [[Hypergeometric equation|hypergeometric equation]] and was first studied by E.T. Whittaker [[#References|[1]]]. For $\lambda=0$ the Whittaker equation is equivalent to the [[Bessel equation|Bessel equation]]. If $2\mu$ is not an integer, a fundamental system of solutions of the Whittaker equation consists of the functions $M_{\lambda,\mu}(z)$ and $M_{\lambda,-\mu}(z)$; here $M_{\lambda,\mu}(z)$ is the Whittaker function (cf. [[Whittaker functions|Whittaker functions]]). For any value of the parameters the general solution of the Whittaker equation may be written in the form of a linear combination |
− | + | $$w=C_1W_{\lambda,\mu}(z)+C_2W_{-\lambda,\mu}(-z),$$ | |
− | where | + | where $W_{\lambda,\mu}(z)$ is the Whittaker function. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.T. Whittaker, "An expression of certain known functions as generalized hypergeometric functions" ''Bull. Amer. Math. Soc.'' , '''10''' (1903) pp. 125–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Kratzer, W. Franz, "Transzendente Funktionen" , Akad. Verlagsgesell. Geest u. Portig K.-D. (1960)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Akad. Verlagsgesell. (1942)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.T. Whittaker, "An expression of certain known functions as generalized hypergeometric functions" ''Bull. Amer. Math. Soc.'' , '''10''' (1903) pp. 125–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Kratzer, W. Franz, "Transzendente Funktionen" , Akad. Verlagsgesell. Geest u. Portig K.-D. (1960)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Akad. Verlagsgesell. (1942)</TD></TR></table> |
Revision as of 10:59, 1 August 2014
A linear homogeneous ordinary differential equation of the second order:
$$w''+\left(\frac{1/4-\mu^2}{z^2}+\frac\lambda z-\frac14\right)w=0,\tag{*}$$
where the variables $z,w$ and the parameters $\lambda,\mu$ may take arbitrary complex values. Equation \ref{*} represents the reduced form of a degenerate hypergeometric equation and was first studied by E.T. Whittaker [1]. For $\lambda=0$ the Whittaker equation is equivalent to the Bessel equation. If $2\mu$ is not an integer, a fundamental system of solutions of the Whittaker equation consists of the functions $M_{\lambda,\mu}(z)$ and $M_{\lambda,-\mu}(z)$; here $M_{\lambda,\mu}(z)$ is the Whittaker function (cf. Whittaker functions). For any value of the parameters the general solution of the Whittaker equation may be written in the form of a linear combination
$$w=C_1W_{\lambda,\mu}(z)+C_2W_{-\lambda,\mu}(-z),$$
where $W_{\lambda,\mu}(z)$ is the Whittaker function.
References
[1] | E.T. Whittaker, "An expression of certain known functions as generalized hypergeometric functions" Bull. Amer. Math. Soc. , 10 (1903) pp. 125–134 |
[2] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) |
[3] | H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 1. The gamma function. The hypergeometric functions. Legendre functions , McGraw-Hill (1953) |
[4] | A. Kratzer, W. Franz, "Transzendente Funktionen" , Akad. Verlagsgesell. Geest u. Portig K.-D. (1960) |
[5] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1. Gewöhnliche Differentialgleichungen , Akad. Verlagsgesell. (1942) |
Whittaker equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whittaker_equation&oldid=12547