Namespaces
Variants
Actions

Difference between revisions of "Dirichlet discontinuous multiplier"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
The integral
 
The integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032830/d0328301.png" /></td> </tr></table>
+
$$\int\limits_0^\infty\frac{\sin\alpha x}{x}\cos\beta xdx=\begin{cases}\frac\pi2&\text{if }\beta<\alpha,\\\frac\pi4&\text{if }\beta=\alpha,\\0&\text{if }\beta>\alpha,\end{cases}$$
  
which is a discontinuous function of the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032830/d0328302.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032830/d0328303.png" />. Used by P.G.L. Dirichlet in his studies on the attraction of ellipsoids [[#References|[1]]]. The integral was encountered earlier in the work of J. Fourier, S. Poisson and A. Legendre.
+
which is a discontinuous function of the parameters $\alpha>0$ and $\beta>0$. Used by P.G.L. Dirichlet in his studies on the attraction of ellipsoids [[#References|[1]]]. The integral was encountered earlier in the work of J. Fourier, S. Poisson and A. Legendre.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.G.L. Dirichlet,  "Werke" , '''1''' , Chelsea, reprint  (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.M. Fichtenholz,  "Differential und Integralrechnung" , '''2–3''' , Deutsch. Verlag Wissenschaft.  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.G.L. Dirichlet,  "Werke" , '''1''' , Chelsea, reprint  (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.M. Fichtenholz,  "Differential und Integralrechnung" , '''2–3''' , Deutsch. Verlag Wissenschaft.  (1964)</TD></TR></table>

Revision as of 09:00, 6 September 2014

The integral

$$\int\limits_0^\infty\frac{\sin\alpha x}{x}\cos\beta xdx=\begin{cases}\frac\pi2&\text{if }\beta<\alpha,\\\frac\pi4&\text{if }\beta=\alpha,\\0&\text{if }\beta>\alpha,\end{cases}$$

which is a discontinuous function of the parameters $\alpha>0$ and $\beta>0$. Used by P.G.L. Dirichlet in his studies on the attraction of ellipsoids [1]. The integral was encountered earlier in the work of J. Fourier, S. Poisson and A. Legendre.

References

[1] P.G.L. Dirichlet, "Werke" , 1 , Chelsea, reprint (1969)
[2] G.M. Fichtenholz, "Differential und Integralrechnung" , 2–3 , Deutsch. Verlag Wissenschaft. (1964)
How to Cite This Entry:
Dirichlet discontinuous multiplier. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_discontinuous_multiplier&oldid=11991
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article