Namespaces
Variants
Actions

Difference between revisions of "Betti group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
In a broad sense, the same as a [[Homology group|homology group]]; in a narrow sense, the Betti group is the free part of the homology group with as domain of coefficients the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015970/b0159701.png" /> of integers, if this homology group is finitely generated. Named after E. Betti (1823–1892).
+
{{TEX|done}}
 +
In a broad sense, the same as a [[Homology group|homology group]]; in a narrow sense, the Betti group is the free part of the homology group with as domain of coefficients the group $\mathbf Z$ of integers, if this homology group is finitely generated. Named after E. Betti (1823–1892).
  
 
====References====
 
====References====

Revision as of 13:48, 1 August 2014

In a broad sense, the same as a homology group; in a narrow sense, the Betti group is the free part of the homology group with as domain of coefficients the group $\mathbf Z$ of integers, if this homology group is finitely generated. Named after E. Betti (1823–1892).

References

[1] H. Seifert, W. Threlfall, "A textbook of topology" , Acad. Press (1980) (Translated from German)
[2] P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)


Comments

References

[a1] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
How to Cite This Entry:
Betti group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Betti_group&oldid=11948
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article