Difference between revisions of "Gauss quadrature formula"
|  (Importing text file) |  (TeX) | ||
| Line 1: | Line 1: | ||
| + | {{TEX|done}} | ||
| The quadrature formula | The quadrature formula | ||
| − | + | $$\int\limits_a^bp(x)f(x)dx\approx\sum_{i=1}^nc_if(x_i),$$ | |
| − | in which the nodes (cf. [[Node|Node]])  | + | in which the nodes (cf. [[Node|Node]]) $x_i$ and the weights $c_i$ are so selected that the formula is exact for the functions | 
| − | + | $$\sum_{k=0}^{2n-1}a_k\omega_k(x),$$ | |
| − | where  | + | where $\omega_k(x)$ are given linearly independent functions (the integration limits may well be infinite). The formula was introduced by C.F. Gauss [[#References|[1]]] for $a=-1$, $b=1$, $p(x)\equiv1$. He obtained the following formula, which is exact for an arbitrary polynomial of degree not exceeding $2n-1$: | 
| − | + | $$\int\limits_{-1}^1f(x)dx=A_1^{(n)}f(x_1)+\ldots+A_n^{(n)}f(x_n)+R_n,$$ | |
| − | where the  | + | where the $x_k$ are the roots of the Legendre polynomial (cf. [[Legendre polynomials|Legendre polynomials]]) $P_n(x)$, while $A_k^{(n)}$ and $R_n$ are defined by the formulas | 
| − | + | $$A_k^{(n)}=\frac{2}{(1-x_k^2)[P_n'(x_k)]^2};$$ | |
| − | + | $$R_n=\frac{2^{2n+1}[n!]^4}{(2n+1)[(2n)!]^3}f^{(2n)}(c),\quad-1<c<1.$$ | |
| − | The formula is used whenever the integrand is sufficiently smooth, and the gain in the number of nodes is substantial; for instance, if  | + | The formula is used whenever the integrand is sufficiently smooth, and the gain in the number of nodes is substantial; for instance, if $f(x)$ is determined from expensive experiments or during the computation of multiple integrals as repeated integrals. In such practical applications a suitable choice of the [[Weight function|weight function]] and of the functions $\omega_j(x)$ is very important. | 
| − | Tables of nodes in Gauss' quadrature formula are available for wide classes of  | + | Tables of nodes in Gauss' quadrature formula are available for wide classes of $p(x)$ and $\omega_j(x)$ [[#References|[5]]]; in particular for $p(x)\equiv1$, $\omega_j(x)=x^j$ up to $n=512$. | 
| − | If  | + | If $p(x)\equiv1$, $\omega_j(x)=x^j$, Gauss' quadrature formula is employed in standard integration programs with an automatic step selection as a method of computing integrals by subdivision of subsegments [[#References|[6]]]. | 
| ====References==== | ====References==== | ||
| Line 29: | Line 30: | ||
| ====Comments==== | ====Comments==== | ||
| − | A detailed investigation of the general Gauss formulas  | + | A detailed investigation of the general Gauss formulas $(w\not\equiv1)$ was carried out by E.B. Christoffel [[#References|[a3]]] and the quadrature coefficients are therefore also called Christoffel coefficients or [[Christoffel numbers|Christoffel numbers]] (see also [[#References|[a1]]]). Tables of these coefficients may be found in [[#References|[a2]]]. | 
| ====References==== | ====References==== | ||
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F.B. Hildebrand,   "Introduction to numerical analysis" , McGraw-Hill  (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Abramowitz,   I.A. Stegun,   "Handbook of mathematical functions" , '''25''' , Dover, reprint  (1970)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E.B. Christoffel,   "Ueber die Gausssche Quadratur und eine Verallgemeinerung derselben"  ''J. Reine Angew. Math.'' , '''55'''  (1858)  pp. 81–82</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P.J. Davis,   P. Rabinowitz,   "Methods of numerical integration" , Acad. Press  (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  R. Piessens,   et al.,   "Quadpack" , Springer  (1983)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F.B. Hildebrand,   "Introduction to numerical analysis" , McGraw-Hill  (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Abramowitz,   I.A. Stegun,   "Handbook of mathematical functions" , '''25''' , Dover, reprint  (1970)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E.B. Christoffel,   "Ueber die Gausssche Quadratur und eine Verallgemeinerung derselben"  ''J. Reine Angew. Math.'' , '''55'''  (1858)  pp. 81–82</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P.J. Davis,   P. Rabinowitz,   "Methods of numerical integration" , Acad. Press  (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  R. Piessens,   et al.,   "Quadpack" , Springer  (1983)</TD></TR></table> | ||
Revision as of 12:40, 27 October 2014
The quadrature formula
$$\int\limits_a^bp(x)f(x)dx\approx\sum_{i=1}^nc_if(x_i),$$
in which the nodes (cf. Node) $x_i$ and the weights $c_i$ are so selected that the formula is exact for the functions
$$\sum_{k=0}^{2n-1}a_k\omega_k(x),$$
where $\omega_k(x)$ are given linearly independent functions (the integration limits may well be infinite). The formula was introduced by C.F. Gauss [1] for $a=-1$, $b=1$, $p(x)\equiv1$. He obtained the following formula, which is exact for an arbitrary polynomial of degree not exceeding $2n-1$:
$$\int\limits_{-1}^1f(x)dx=A_1^{(n)}f(x_1)+\ldots+A_n^{(n)}f(x_n)+R_n,$$
where the $x_k$ are the roots of the Legendre polynomial (cf. Legendre polynomials) $P_n(x)$, while $A_k^{(n)}$ and $R_n$ are defined by the formulas
$$A_k^{(n)}=\frac{2}{(1-x_k^2)[P_n'(x_k)]^2};$$
$$R_n=\frac{2^{2n+1}[n!]^4}{(2n+1)[(2n)!]^3}f^{(2n)}(c),\quad-1<c<1.$$
The formula is used whenever the integrand is sufficiently smooth, and the gain in the number of nodes is substantial; for instance, if $f(x)$ is determined from expensive experiments or during the computation of multiple integrals as repeated integrals. In such practical applications a suitable choice of the weight function and of the functions $\omega_j(x)$ is very important.
Tables of nodes in Gauss' quadrature formula are available for wide classes of $p(x)$ and $\omega_j(x)$ [5]; in particular for $p(x)\equiv1$, $\omega_j(x)=x^j$ up to $n=512$.
If $p(x)\equiv1$, $\omega_j(x)=x^j$, Gauss' quadrature formula is employed in standard integration programs with an automatic step selection as a method of computing integrals by subdivision of subsegments [6].
References
| [1] | C.F. Gauss, "Methodus nova integralium valores per approximationem inveniendi" , Werke , 3 , K. Gesellschaft Wissenschaft. Göttingen (1886) pp. 163–196 | 
| [2] | N.M. Krylov, "Approximate calculation of integrals" , Macmillan (1962) (Translated from Russian) | 
| [3] | V.I. Krylov, L.T. Shul'gina, "Handbook on numerical integration" , Moscow (1966) (In Russian) | 
| [4] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) | 
| [5] | A.H. Stroud, "Gaussian quadrature formulas" , Prentice-Hall (1966) | 
| [6] | , A standard program for the computation of single integrals of quadratures of Gauss' type : 26 , Moscow (1967) (In Russian) | 
Comments
A detailed investigation of the general Gauss formulas $(w\not\equiv1)$ was carried out by E.B. Christoffel [a3] and the quadrature coefficients are therefore also called Christoffel coefficients or Christoffel numbers (see also [a1]). Tables of these coefficients may be found in [a2].
References
| [a1] | F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974) | 
| [a2] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , 25 , Dover, reprint (1970) | 
| [a3] | E.B. Christoffel, "Ueber die Gausssche Quadratur und eine Verallgemeinerung derselben" J. Reine Angew. Math. , 55 (1858) pp. 81–82 | 
| [a4] | P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) | 
| [a5] | R. Piessens, et al., "Quadpack" , Springer (1983) | 
Gauss quadrature formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_quadrature_formula&oldid=11718