Namespaces
Variants
Actions

Difference between revisions of "Kolmogorov integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A general scheme for constructing an integral, including the [[Lebesgue–Stieltjes integral|Lebesgue–Stieltjes integral]], the [[Burkill integral|Burkill integral]], the [[Hellinger integral|Hellinger integral]], etc. Introduced by A.N. Kolmogorov [[#References|[1]]]. One considers a directed family of partitions of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055720/k0557201.png" /> of arbitrary nature. A set function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055720/k0557202.png" /> (generally many-valued) is defined on the elements of the partition. The sum of the values of this function taken over all elements of the partition gives a many-valued function of the partition. In particular, this sum is a generalization of the Riemann sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055720/k0557203.png" /> where the multi-valuedness is a consequence of the arbitrariness in the choice of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055720/k0557204.png" /> on the elements of the partition. The directed limit of the partition functions then defines the Kolmogorov integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055720/k0557205.png" />. The Kolmogorov integral is considered both for finite and countable partitions. The Kolmogorov integral can be considered for functions with values in a commutative topological group.
+
{{TEX|done}}
 +
A general scheme for constructing an integral, including the [[Lebesgue–Stieltjes integral|Lebesgue–Stieltjes integral]], the [[Burkill integral|Burkill integral]], the [[Hellinger integral|Hellinger integral]], etc. Introduced by A.N. Kolmogorov [[#References|[1]]]. One considers a directed family of partitions of a space $E$ of arbitrary nature. A set function $\Phi$ (generally many-valued) is defined on the elements of the partition. The sum of the values of this function taken over all elements of the partition gives a many-valued function of the partition. In particular, this sum is a generalization of the Riemann sum $\sum_if(\xi_i)\Delta x_i$ where the multi-valuedness is a consequence of the arbitrariness in the choice of the points $\xi_i$ on the elements of the partition. The directed limit of the partition functions then defines the Kolmogorov integral $\int_Ed\Phi$. The Kolmogorov integral is considered both for finite and countable partitions. The Kolmogorov integral can be considered for functions with values in a commutative topological group.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. [A.N. Kolmogorov] Kolmogoroff,  "Untersuchungen über den Integralbegriff"  ''Math. Ann.'' , '''103'''  (1930)  pp. 654–696</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. [A.N. Kolmogorov] Kolmogoroff,  "Untersuchungen über den Integralbegriff"  ''Math. Ann.'' , '''103'''  (1930)  pp. 654–696</TD></TR></table>

Latest revision as of 18:13, 4 November 2014

A general scheme for constructing an integral, including the Lebesgue–Stieltjes integral, the Burkill integral, the Hellinger integral, etc. Introduced by A.N. Kolmogorov [1]. One considers a directed family of partitions of a space $E$ of arbitrary nature. A set function $\Phi$ (generally many-valued) is defined on the elements of the partition. The sum of the values of this function taken over all elements of the partition gives a many-valued function of the partition. In particular, this sum is a generalization of the Riemann sum $\sum_if(\xi_i)\Delta x_i$ where the multi-valuedness is a consequence of the arbitrariness in the choice of the points $\xi_i$ on the elements of the partition. The directed limit of the partition functions then defines the Kolmogorov integral $\int_Ed\Phi$. The Kolmogorov integral is considered both for finite and countable partitions. The Kolmogorov integral can be considered for functions with values in a commutative topological group.

References

[1] A. [A.N. Kolmogorov] Kolmogoroff, "Untersuchungen über den Integralbegriff" Math. Ann. , 103 (1930) pp. 654–696
How to Cite This Entry:
Kolmogorov integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kolmogorov_integral&oldid=11583
This article was adapted from an original article by V.A. Skvortsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article